Anterior and coracoid base tunnel location combined with single -or double clavicular tunnel techniques using double-button fixation for coracoclavicular ligament reconstruction both restore horizontal stability. A biomechanical cadaver study
{"title":"Anterior and coracoid base tunnel location combined with single -or double clavicular tunnel techniques using double-button fixation for coracoclavicular ligament reconstruction both restore horizontal stability. A biomechanical cadaver study","authors":"Maketo Molepo , Natalie Keough , Abrie Oberholster , Erik Hohmann","doi":"10.1016/j.clinbiomech.2024.106363","DOIUrl":null,"url":null,"abstract":"<div><h3>Background</h3><div>The placement of clavicle tunnels in coracoclavicular ligament reconstruction is well established, but the optimal position of the coracoid tunnel remains unclear. This study aimed to investigate how the coracoid tunnel's position affects horizontal stability during coracoclavicular ligament reconstruction using a double-button technique.</div></div><div><h3>Methods</h3><div>Fifteen fresh frozen shoulder cadaver specimens were tested under various conditions: intact coracoclavicular ligaments, disrupted ligaments, and reconstructions with a single coracoid and clavicle tunnel or double clavicle tunnels. The coracoid tunnel was positioned at the coracoid base 1/9, and 1/5 anterior to the base. Specimens underwent displacement-controlled loading, with 2D motion analysis conducted on captured digital images using TEMA motion analysis.</div></div><div><h3>Findings</h3><div>Mean displacement for intact coracoclavicular ligaments was 1.61 ± 0.92 mm, and 3.69 ± 1.09 mm for disrupted ligaments. For reconstructed conditions, displacements were as follows: Single-Tunnel Base (1.87 ± 0.64 mm), Single-Tunnel 1/9 (2.54 ± 1.13 mm), Single-Tunnel 1/5 (2.62 ± 1.17 mm), Double-Tunnel Base (1.25 ± 0.73 mm), Double-Tunnel 1/9 (2.03 ± 1.22 mm), and Double-Tunnel 1/5 (1.88 ± 1.20 mm). Differences among intact, reconstructed, and disrupted states were statistically significant (<em>p</em> = 0.01–0.0001), with all reconstruction techniques restoring horizontal displacement near the intact state.</div></div><div><h3>Interpretation</h3><div>At point zero both single coracoid tunnel and single- and double-clavicle tunnel restored horizontal displacement to its intact state. Coracoid tunnel placement anterior to the base of the coracoid did not influence horizontal displacement but single coracoid at the coracoid base and single clavicle tunnel resulted in the most anatomic reconstruction. Single coracoid tunnel at the base and double-clavicle resulted in the most stable reconstruction.</div></div>","PeriodicalId":50992,"journal":{"name":"Clinical Biomechanics","volume":"120 ","pages":"Article 106363"},"PeriodicalIF":1.4000,"publicationDate":"2024-10-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Clinical Biomechanics","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0268003324001955","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Background
The placement of clavicle tunnels in coracoclavicular ligament reconstruction is well established, but the optimal position of the coracoid tunnel remains unclear. This study aimed to investigate how the coracoid tunnel's position affects horizontal stability during coracoclavicular ligament reconstruction using a double-button technique.
Methods
Fifteen fresh frozen shoulder cadaver specimens were tested under various conditions: intact coracoclavicular ligaments, disrupted ligaments, and reconstructions with a single coracoid and clavicle tunnel or double clavicle tunnels. The coracoid tunnel was positioned at the coracoid base 1/9, and 1/5 anterior to the base. Specimens underwent displacement-controlled loading, with 2D motion analysis conducted on captured digital images using TEMA motion analysis.
Findings
Mean displacement for intact coracoclavicular ligaments was 1.61 ± 0.92 mm, and 3.69 ± 1.09 mm for disrupted ligaments. For reconstructed conditions, displacements were as follows: Single-Tunnel Base (1.87 ± 0.64 mm), Single-Tunnel 1/9 (2.54 ± 1.13 mm), Single-Tunnel 1/5 (2.62 ± 1.17 mm), Double-Tunnel Base (1.25 ± 0.73 mm), Double-Tunnel 1/9 (2.03 ± 1.22 mm), and Double-Tunnel 1/5 (1.88 ± 1.20 mm). Differences among intact, reconstructed, and disrupted states were statistically significant (p = 0.01–0.0001), with all reconstruction techniques restoring horizontal displacement near the intact state.
Interpretation
At point zero both single coracoid tunnel and single- and double-clavicle tunnel restored horizontal displacement to its intact state. Coracoid tunnel placement anterior to the base of the coracoid did not influence horizontal displacement but single coracoid at the coracoid base and single clavicle tunnel resulted in the most anatomic reconstruction. Single coracoid tunnel at the base and double-clavicle resulted in the most stable reconstruction.
期刊介绍:
Clinical Biomechanics is an international multidisciplinary journal of biomechanics with a focus on medical and clinical applications of new knowledge in the field.
The science of biomechanics helps explain the causes of cell, tissue, organ and body system disorders, and supports clinicians in the diagnosis, prognosis and evaluation of treatment methods and technologies. Clinical Biomechanics aims to strengthen the links between laboratory and clinic by publishing cutting-edge biomechanics research which helps to explain the causes of injury and disease, and which provides evidence contributing to improved clinical management.
A rigorous peer review system is employed and every attempt is made to process and publish top-quality papers promptly.
Clinical Biomechanics explores all facets of body system, organ, tissue and cell biomechanics, with an emphasis on medical and clinical applications of the basic science aspects. The role of basic science is therefore recognized in a medical or clinical context. The readership of the journal closely reflects its multi-disciplinary contents, being a balance of scientists, engineers and clinicians.
The contents are in the form of research papers, brief reports, review papers and correspondence, whilst special interest issues and supplements are published from time to time.
Disciplines covered include biomechanics and mechanobiology at all scales, bioengineering and use of tissue engineering and biomaterials for clinical applications, biophysics, as well as biomechanical aspects of medical robotics, ergonomics, physical and occupational therapeutics and rehabilitation.