Bipartite Ramsey number pairs that involve combinations of cycles and odd paths

IF 0.7 3区 数学 Q2 MATHEMATICS
Ernst J. Joubert
{"title":"Bipartite Ramsey number pairs that involve combinations of cycles and odd paths","authors":"Ernst J. Joubert","doi":"10.1016/j.disc.2024.114283","DOIUrl":null,"url":null,"abstract":"<div><div>For bipartite graphs <span><math><msub><mrow><mi>G</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><msub><mrow><mi>G</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>,</mo><mo>…</mo><mo>,</mo><msub><mrow><mi>G</mi></mrow><mrow><mi>k</mi></mrow></msub></math></span>, the bipartite Ramsey number <span><math><mi>b</mi><mo>(</mo><msub><mrow><mi>G</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><msub><mrow><mi>G</mi></mrow><mrow><mn>2</mn></mrow></msub></math></span>, <span><math><mo>…</mo><mo>,</mo><msub><mrow><mi>G</mi></mrow><mrow><mi>k</mi></mrow></msub><mo>)</mo></math></span> is the least positive integer <em>b</em>, so that any coloring of the edges of <span><math><msub><mrow><mi>K</mi></mrow><mrow><mi>b</mi><mo>,</mo><mi>b</mi></mrow></msub></math></span> with <em>k</em> colors, will result in a copy of <span><math><msub><mrow><mi>G</mi></mrow><mrow><mi>i</mi></mrow></msub></math></span> in the <em>i</em>th color, for some <em>i</em>. For bipartite graphs <span><math><msub><mrow><mi>G</mi></mrow><mrow><mn>1</mn></mrow></msub></math></span> and <span><math><msub><mrow><mi>G</mi></mrow><mrow><mn>2</mn></mrow></msub></math></span>, the bipartite Ramsey number pair <span><math><mo>(</mo><mi>a</mi><mo>,</mo><mi>b</mi><mo>)</mo></math></span>, denoted by <span><math><msub><mrow><mi>b</mi></mrow><mrow><mi>p</mi></mrow></msub><mo>(</mo><msub><mrow><mi>G</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><msub><mrow><mi>G</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>)</mo><mo>=</mo><mo>(</mo><mi>a</mi><mo>,</mo><mi>b</mi><mo>)</mo></math></span>, is an ordered pair of integers such that for any blue-red coloring of the edges of <span><math><msub><mrow><mi>K</mi></mrow><mrow><msup><mrow><mi>a</mi></mrow><mrow><mo>′</mo></mrow></msup><mo>,</mo><msup><mrow><mi>b</mi></mrow><mrow><mo>′</mo></mrow></msup></mrow></msub></math></span>, with <span><math><msup><mrow><mi>a</mi></mrow><mrow><mo>′</mo></mrow></msup><mo>≥</mo><msup><mrow><mi>b</mi></mrow><mrow><mo>′</mo></mrow></msup></math></span>, either a blue copy of <span><math><msub><mrow><mi>G</mi></mrow><mrow><mn>1</mn></mrow></msub></math></span> exists or a red copy of <span><math><msub><mrow><mi>G</mi></mrow><mrow><mn>2</mn></mrow></msub></math></span> exists if and only if <span><math><msup><mrow><mi>a</mi></mrow><mrow><mo>′</mo></mrow></msup><mo>≥</mo><mi>a</mi></math></span> and <span><math><msup><mrow><mi>b</mi></mrow><mrow><mo>′</mo></mrow></msup><mo>≥</mo><mi>b</mi></math></span>. In <span><span>[4]</span></span>, Faudree and Schelp considered bipartite Ramsey number pairs involving paths. Recently, Joubert, Hattingh and Henning showed, in <span><span>[7]</span></span> and <span><span>[8]</span></span>, that <span><math><msub><mrow><mi>b</mi></mrow><mrow><mi>p</mi></mrow></msub><mo>(</mo><msub><mrow><mi>C</mi></mrow><mrow><mn>2</mn><mi>s</mi></mrow></msub><mo>,</mo><msub><mrow><mi>C</mi></mrow><mrow><mn>2</mn><mi>s</mi></mrow></msub><mo>)</mo><mo>=</mo><mo>(</mo><mn>2</mn><mi>s</mi><mo>,</mo><mn>2</mn><mi>s</mi><mo>−</mo><mn>1</mn><mo>)</mo></math></span> and <span><math><mi>b</mi><mo>(</mo><msub><mrow><mi>P</mi></mrow><mrow><mn>2</mn><mi>s</mi></mrow></msub><mo>,</mo><msub><mrow><mi>C</mi></mrow><mrow><mn>2</mn><mi>s</mi></mrow></msub><mo>)</mo><mo>=</mo><mn>2</mn><mi>s</mi><mo>−</mo><mn>1</mn></math></span>, for sufficiently large positive integers <em>s</em>. In this paper we will focus our attention on finding exact values for bipartite Ramsey number pairs that involve cycles and odd paths. Specifically, let <em>s</em> and <em>r</em> be sufficiently large positive integers. We will prove that <span><math><msub><mrow><mi>b</mi></mrow><mrow><mi>p</mi></mrow></msub><mo>(</mo><msub><mrow><mi>C</mi></mrow><mrow><mn>2</mn><mi>s</mi></mrow></msub><mo>,</mo><msub><mrow><mi>P</mi></mrow><mrow><mn>2</mn><mi>r</mi><mo>+</mo><mn>1</mn></mrow></msub><mo>)</mo><mo>=</mo><mo>(</mo><mi>s</mi><mo>+</mo><mi>r</mi><mo>,</mo><mi>s</mi><mo>+</mo><mi>r</mi><mo>−</mo><mn>1</mn><mo>)</mo></math></span> if <span><math><mi>r</mi><mo>≥</mo><mi>s</mi><mo>+</mo><mn>1</mn></math></span>, <span><math><msub><mrow><mi>b</mi></mrow><mrow><mi>p</mi></mrow></msub><mo>(</mo><msub><mrow><mi>P</mi></mrow><mrow><mn>2</mn><mi>s</mi><mo>+</mo><mn>1</mn></mrow></msub><mo>,</mo><msub><mrow><mi>C</mi></mrow><mrow><mn>2</mn><mi>r</mi></mrow></msub><mo>)</mo><mo>=</mo><mo>(</mo><mi>s</mi><mo>+</mo><mi>r</mi><mo>,</mo><mi>s</mi><mo>+</mo><mi>r</mi><mo>)</mo></math></span> if <span><math><mi>r</mi><mo>=</mo><mi>s</mi><mo>+</mo><mn>1</mn></math></span>, and <span><math><msub><mrow><mi>b</mi></mrow><mrow><mi>p</mi></mrow></msub><mo>(</mo><msub><mrow><mi>P</mi></mrow><mrow><mn>2</mn><mi>s</mi><mo>+</mo><mn>1</mn></mrow></msub><mo>,</mo><msub><mrow><mi>C</mi></mrow><mrow><mn>2</mn><mi>r</mi></mrow></msub><mo>)</mo><mo>=</mo><mo>(</mo><mi>s</mi><mo>+</mo><mi>r</mi><mo>−</mo><mn>1</mn><mo>,</mo><mi>s</mi><mo>+</mo><mi>r</mi><mo>−</mo><mn>1</mn><mo>)</mo></math></span> if <span><math><mi>r</mi><mo>≥</mo><mi>s</mi><mo>+</mo><mn>2</mn></math></span>.</div></div>","PeriodicalId":50572,"journal":{"name":"Discrete Mathematics","volume":"348 2","pages":"Article 114283"},"PeriodicalIF":0.7000,"publicationDate":"2024-10-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Discrete Mathematics","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0012365X2400414X","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

For bipartite graphs G1,G2,,Gk, the bipartite Ramsey number b(G1,G2, ,Gk) is the least positive integer b, so that any coloring of the edges of Kb,b with k colors, will result in a copy of Gi in the ith color, for some i. For bipartite graphs G1 and G2, the bipartite Ramsey number pair (a,b), denoted by bp(G1,G2)=(a,b), is an ordered pair of integers such that for any blue-red coloring of the edges of Ka,b, with ab, either a blue copy of G1 exists or a red copy of G2 exists if and only if aa and bb. In [4], Faudree and Schelp considered bipartite Ramsey number pairs involving paths. Recently, Joubert, Hattingh and Henning showed, in [7] and [8], that bp(C2s,C2s)=(2s,2s1) and b(P2s,C2s)=2s1, for sufficiently large positive integers s. In this paper we will focus our attention on finding exact values for bipartite Ramsey number pairs that involve cycles and odd paths. Specifically, let s and r be sufficiently large positive integers. We will prove that bp(C2s,P2r+1)=(s+r,s+r1) if rs+1, bp(P2s+1,C2r)=(s+r,s+r) if r=s+1, and bp(P2s+1,C2r)=(s+r1,s+r1) if rs+2.
涉及循环和奇数路径组合的二方拉姆齐数对
对于双胞图 G1,G2,...,Gk,双胞拉姆齐数 b(G1,G2,...,Gk)是最小的正整数 b,使得 Kb,b 的边的任何着色都有 k 种颜色,在第 i 种颜色下将得到 Gi 的副本。对于双分部图 G1 和 G2,双分部拉姆齐数对(a,b)(用 bp(G1,G2)=(a,b) 表示)是一对有序整数,对于 Ka′、b′,当且仅当 a′≥a,b′≥b 时,要么存在 G1 的蓝色副本,要么存在 G2 的红色副本。在 [4] 中,Faudree 和 Schelp 考虑了涉及路径的双方位拉姆齐数对。最近,Joubert、Hattingh 和 Henning 在 [7] 和 [8] 中证明,对于足够大的正整数 s,bp(C2s,C2s)=(2s,2s-1) 和 b(P2s,C2s)=2s-1。具体来说,假设 s 和 r 是足够大的正整数。我们将证明,如果 r≥s+1 时,bp(C2s,P2r+1)=(s+r,s+r-1);如果 r=s+1 时,bp(P2s+1,C2r)=(s+r,s+r);如果 r≥s+2 时,bp(P2s+1,C2r)=(s+r-1,s+r-1)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Discrete Mathematics
Discrete Mathematics 数学-数学
CiteScore
1.50
自引率
12.50%
发文量
424
审稿时长
6 months
期刊介绍: Discrete Mathematics provides a common forum for significant research in many areas of discrete mathematics and combinatorics. Among the fields covered by Discrete Mathematics are graph and hypergraph theory, enumeration, coding theory, block designs, the combinatorics of partially ordered sets, extremal set theory, matroid theory, algebraic combinatorics, discrete geometry, matrices, and discrete probability theory. Items in the journal include research articles (Contributions or Notes, depending on length) and survey/expository articles (Perspectives). Efforts are made to process the submission of Notes (short articles) quickly. The Perspectives section features expository articles accessible to a broad audience that cast new light or present unifying points of view on well-known or insufficiently-known topics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信