Effect of the position of Mg replacing Ni on O3-NaNi1/3Fe1/3Mn1/3O2 on the structural stability of cathode materials

IF 3 4区 材料科学 Q3 CHEMISTRY, PHYSICAL
Jingxiu Tian , Li-ang Zhu , Hongshun Miao , Xiangxin Li , Yan Liu
{"title":"Effect of the position of Mg replacing Ni on O3-NaNi1/3Fe1/3Mn1/3O2 on the structural stability of cathode materials","authors":"Jingxiu Tian ,&nbsp;Li-ang Zhu ,&nbsp;Hongshun Miao ,&nbsp;Xiangxin Li ,&nbsp;Yan Liu","doi":"10.1016/j.ssi.2024.116718","DOIUrl":null,"url":null,"abstract":"<div><div>O3-NaNi<sub>1/3</sub>Fe<sub>1/3</sub>Mn<sub>1/3</sub>O<sub>2</sub> (NaNFM) materials are susceptible to complex phase transitions during electrical cycling leading to poor structural, capacity retention and multiplicity properties. These drawbacks hinder the application of NaNFM in sodium-ion batteries. Here, Mg<sup>2+</sup> with larger ionic radius was used to dope its transition metal layer Ni site. The effects of Mg<sup>2+</sup> doped NaNFM crystal structure and transition metal valence states on its electrochemical properties were investigated by XRD, SEM, and XPS. The capacity retention of NaNMFM-0.02 (84.05 %) was higher than that of NaNFM (73 %) after 200 cycles of the material at 5C. In addition, NaNMFM-0.02 achieved a first discharge specific capacity of 146.5 mAh/g at high voltage. Based on structural and electrochemical analyses, this improvement is attributed to the fact that magnesium acts as a “pillar” to stabilize the crystal structure of NaNFM, while magnesium doping reduces the Jahn-Teller effect. As a result, the material has better electrochemical properties.</div></div>","PeriodicalId":431,"journal":{"name":"Solid State Ionics","volume":"417 ","pages":"Article 116718"},"PeriodicalIF":3.0000,"publicationDate":"2024-10-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Solid State Ionics","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0167273824002662","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

O3-NaNi1/3Fe1/3Mn1/3O2 (NaNFM) materials are susceptible to complex phase transitions during electrical cycling leading to poor structural, capacity retention and multiplicity properties. These drawbacks hinder the application of NaNFM in sodium-ion batteries. Here, Mg2+ with larger ionic radius was used to dope its transition metal layer Ni site. The effects of Mg2+ doped NaNFM crystal structure and transition metal valence states on its electrochemical properties were investigated by XRD, SEM, and XPS. The capacity retention of NaNMFM-0.02 (84.05 %) was higher than that of NaNFM (73 %) after 200 cycles of the material at 5C. In addition, NaNMFM-0.02 achieved a first discharge specific capacity of 146.5 mAh/g at high voltage. Based on structural and electrochemical analyses, this improvement is attributed to the fact that magnesium acts as a “pillar” to stabilize the crystal structure of NaNFM, while magnesium doping reduces the Jahn-Teller effect. As a result, the material has better electrochemical properties.

Abstract Image

镁取代镍在 O3-NaNi1/3Fe1/3Mn1/3O2 上的位置对阴极材料结构稳定性的影响
O3-NaNi1/3Fe1/3Mn1/3O2(NaNFM)材料在电循环过程中容易发生复杂的相变,导致结构、容量保持和倍率特性不佳。这些缺点阻碍了 NaNFM 在钠离子电池中的应用。在这里,采用了离子半径较大的 Mg2+ 来掺杂其过渡金属层 Ni 位点。通过 XRD、SEM 和 XPS 研究了掺杂 Mg2+ 的 NaNFM 晶体结构和过渡金属价态对其电化学性能的影响。在 5C 下循环 200 次后,NaNMFM-0.02 的容量保持率(84.05%)高于 NaNFM(73%)。此外,NaNMFM-0.02 在高电压下的首次放电比容量达到了 146.5 mAh/g。根据结构和电化学分析,这一改进归因于镁作为 "支柱 "稳定了 NaNFM 的晶体结构,同时镁的掺杂降低了 Jahn-Teller 效应。因此,该材料具有更好的电化学特性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Solid State Ionics
Solid State Ionics 物理-物理:凝聚态物理
CiteScore
6.10
自引率
3.10%
发文量
152
审稿时长
58 days
期刊介绍: This interdisciplinary journal is devoted to the physics, chemistry and materials science of diffusion, mass transport, and reactivity of solids. The major part of each issue is devoted to articles on: (i) physics and chemistry of defects in solids; (ii) reactions in and on solids, e.g. intercalation, corrosion, oxidation, sintering; (iii) ion transport measurements, mechanisms and theory; (iv) solid state electrochemistry; (v) ionically-electronically mixed conducting solids. Related technological applications are also included, provided their characteristics are interpreted in terms of the basic solid state properties. Review papers and relevant symposium proceedings are welcome.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信