{"title":"On the completeness property of root vector systems for 2 × 2 Dirac type operators with non-regular boundary conditions","authors":"Anton A. Lunyov , Mark M. Malamud","doi":"10.1016/j.jmaa.2024.128949","DOIUrl":null,"url":null,"abstract":"<div><div>The paper is concerned with the completeness property of a system of root vectors of a boundary value problem for the following <span><math><mn>2</mn><mo>×</mo><mn>2</mn></math></span> Dirac type equation<span><span><span><math><mi>L</mi><mi>y</mi><mo>=</mo><mo>−</mo><mi>i</mi><msup><mrow><mi>B</mi></mrow><mrow><mo>−</mo><mn>1</mn></mrow></msup><msup><mrow><mi>y</mi></mrow><mrow><mo>′</mo></mrow></msup><mo>+</mo><mi>Q</mi><mo>(</mo><mi>x</mi><mo>)</mo><mi>y</mi><mo>=</mo><mi>λ</mi><mi>y</mi><mo>,</mo><mspace></mspace><mi>y</mi><mo>=</mo><mi>col</mi><mo>(</mo><msub><mrow><mi>y</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><msub><mrow><mi>y</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>)</mo><mo>,</mo><mspace></mspace><mi>x</mi><mo>∈</mo><mo>[</mo><mn>0</mn><mo>,</mo><mn>1</mn><mo>]</mo><mo>,</mo><mi>B</mi><mo>=</mo><mi>diag</mi><mo>(</mo><msub><mrow><mi>b</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><msub><mrow><mi>b</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>)</mo><mo>,</mo><mspace></mspace><msub><mrow><mi>b</mi></mrow><mrow><mn>1</mn></mrow></msub><mo><</mo><mn>0</mn><mo><</mo><msub><mrow><mi>b</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>,</mo><mspace></mspace><mtext>and</mtext><mspace></mspace><mi>Q</mi><mo>∈</mo><msubsup><mrow><mi>W</mi></mrow><mrow><mn>1</mn></mrow><mrow><mi>n</mi></mrow></msubsup><mo>[</mo><mn>0</mn><mo>,</mo><mn>1</mn><mo>]</mo><mo>⊗</mo><msup><mrow><mi>C</mi></mrow><mrow><mn>2</mn><mo>×</mo><mn>2</mn></mrow></msup><mo>,</mo></math></span></span></span> subject to general non-regular two-point boundary conditions <span><math><mi>C</mi><mi>y</mi><mo>(</mo><mn>0</mn><mo>)</mo><mo>+</mo><mi>D</mi><mi>y</mi><mo>(</mo><mn>1</mn><mo>)</mo><mo>=</mo><mn>0</mn></math></span>. If <span><math><msub><mrow><mi>b</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>=</mo><mo>−</mo><msub><mrow><mi>b</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>=</mo><mn>1</mn></math></span>, this equation is equivalent to the one dimensional Dirac equation.</div><div>We establish a new completeness result for the system of root vectors of such boundary value problem with <em>non-regular and even degenerate</em> boundary conditions. We also present several explicit completeness results in terms of values <span><math><msup><mrow><mi>Q</mi></mrow><mrow><mo>(</mo><mi>j</mi><mo>)</mo></mrow></msup><mo>(</mo><mn>0</mn><mo>)</mo></math></span> and <span><math><msup><mrow><mi>Q</mi></mrow><mrow><mo>(</mo><mi>j</mi><mo>)</mo></mrow></msup><mo>(</mo><mn>1</mn><mo>)</mo></math></span>. In the case of degenerate boundary conditions and the analytic <span><math><mi>Q</mi><mo>(</mo><mo>⋅</mo><mo>)</mo></math></span>, the criterion of the completeness property is established. We demonstrate our results on the explicit example of a complete system of vector quasi-exponential polynomials.</div><div>Applications to the spectral synthesis for Dirac type operators are discussed. Moreover, applications to the completeness property for the damped string equation are provided.</div></div>","PeriodicalId":50147,"journal":{"name":"Journal of Mathematical Analysis and Applications","volume":"543 2","pages":"Article 128949"},"PeriodicalIF":1.2000,"publicationDate":"2024-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Mathematical Analysis and Applications","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022247X24008710","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
The paper is concerned with the completeness property of a system of root vectors of a boundary value problem for the following Dirac type equation subject to general non-regular two-point boundary conditions . If , this equation is equivalent to the one dimensional Dirac equation.
We establish a new completeness result for the system of root vectors of such boundary value problem with non-regular and even degenerate boundary conditions. We also present several explicit completeness results in terms of values and . In the case of degenerate boundary conditions and the analytic , the criterion of the completeness property is established. We demonstrate our results on the explicit example of a complete system of vector quasi-exponential polynomials.
Applications to the spectral synthesis for Dirac type operators are discussed. Moreover, applications to the completeness property for the damped string equation are provided.
期刊介绍:
The Journal of Mathematical Analysis and Applications presents papers that treat mathematical analysis and its numerous applications. The journal emphasizes articles devoted to the mathematical treatment of questions arising in physics, chemistry, biology, and engineering, particularly those that stress analytical aspects and novel problems and their solutions.
Papers are sought which employ one or more of the following areas of classical analysis:
• Analytic number theory
• Functional analysis and operator theory
• Real and harmonic analysis
• Complex analysis
• Numerical analysis
• Applied mathematics
• Partial differential equations
• Dynamical systems
• Control and Optimization
• Probability
• Mathematical biology
• Combinatorics
• Mathematical physics.