Green and regulable synthesis of CdNCN on CdS semiconductor: Atomic-level heterostructures for enhanced photocatalytic hydrogen evolution

Taiyu Huang , Zimo Huang , Xixian Yang , Siyuan Yang , Qiongzhi Gao , Xin Cai , Yingju Liu , Yueping Fang , Shanqing Zhang , Shengsen Zhang
{"title":"Green and regulable synthesis of CdNCN on CdS semiconductor: Atomic-level heterostructures for enhanced photocatalytic hydrogen evolution","authors":"Taiyu Huang ,&nbsp;Zimo Huang ,&nbsp;Xixian Yang ,&nbsp;Siyuan Yang ,&nbsp;Qiongzhi Gao ,&nbsp;Xin Cai ,&nbsp;Yingju Liu ,&nbsp;Yueping Fang ,&nbsp;Shanqing Zhang ,&nbsp;Shengsen Zhang","doi":"10.1016/j.apmate.2024.100242","DOIUrl":null,"url":null,"abstract":"<div><div>In the realm of photoenergy conversion, the scarcity of efficient light-driven semiconductors poses a significant obstacle to the advancement of photocatalysis, highlighting the critical need for researchers to explore novel semiconductor materials. Herein, we present the inaugural synthesis of a novel semiconductor, CdNCN, under mild conditions, while shedding light on its formation mechanism. By effectively harnessing the [NCN]<sup>2</sup><sup>⁻</sup> moiety in the thiourea process, we successfully achieve the one-pot synthesis of CdNCN-CdS heterostructure photocatalysts. Notably, the optimal CdNCN-CdS sample demonstrates a hydrogen evolution rate of 14.7 ​mmol ​g<sup>−1</sup> ​h<sup>−1</sup> under visible light irradiation, establishing itself as the most efficient catalyst among all reported CdS-based composites without any cocatalysts. This outstanding hydrogen evolution performance of CdNCN-CdS primarily arises from two key factors: i) the establishment of an atomic-level N-Cd-S heterostructure at the interface between CdNCN and CdS, which facilitating highly efficient electron transfer; ii) the directed transfer of electrons to the (110) crystal plane of CdNCN, promoting optimal hydrogen adsorption and active participation in the hydrogen evolution reaction. This study provides a new method for synthesizing CdNCN materials and offers insights into the design and preparation of innovative atomic-level composite semiconductor photocatalysts.</div></div>","PeriodicalId":7283,"journal":{"name":"Advanced Powder Materials","volume":"3 6","pages":"Article 100242"},"PeriodicalIF":0.0000,"publicationDate":"2024-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Powder Materials","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2772834X24000733","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In the realm of photoenergy conversion, the scarcity of efficient light-driven semiconductors poses a significant obstacle to the advancement of photocatalysis, highlighting the critical need for researchers to explore novel semiconductor materials. Herein, we present the inaugural synthesis of a novel semiconductor, CdNCN, under mild conditions, while shedding light on its formation mechanism. By effectively harnessing the [NCN]2 moiety in the thiourea process, we successfully achieve the one-pot synthesis of CdNCN-CdS heterostructure photocatalysts. Notably, the optimal CdNCN-CdS sample demonstrates a hydrogen evolution rate of 14.7 ​mmol ​g−1 ​h−1 under visible light irradiation, establishing itself as the most efficient catalyst among all reported CdS-based composites without any cocatalysts. This outstanding hydrogen evolution performance of CdNCN-CdS primarily arises from two key factors: i) the establishment of an atomic-level N-Cd-S heterostructure at the interface between CdNCN and CdS, which facilitating highly efficient electron transfer; ii) the directed transfer of electrons to the (110) crystal plane of CdNCN, promoting optimal hydrogen adsorption and active participation in the hydrogen evolution reaction. This study provides a new method for synthesizing CdNCN materials and offers insights into the design and preparation of innovative atomic-level composite semiconductor photocatalysts.

Abstract Image

在 CdS 半导体上绿色可控地合成 CdNCN:用于增强光催化氢进化的原子级异质结构
在光能转换领域,高效光驱动半导体的稀缺性严重阻碍了光催化技术的发展,凸显了研究人员探索新型半导体材料的迫切需要。在此,我们首次在温和条件下合成了一种新型半导体--CdNCN,同时揭示了其形成机理。通过有效利用硫脲工艺中的[NCN]2-分子,我们成功地实现了 CdNCN-CdS 异质结构光催化剂的一锅合成。值得注意的是,最佳的 CdNCN-CdS 样品在可见光照射下的氢气进化速率为 14.7 mmol g-1 h-1,在所有已报道的不含任何助催化剂的 CdS 基复合材料中成为最高效的催化剂。CdNCN-CdS 优异的氢演化性能主要源于两个关键因素:i) 在 CdNCN 和 CdS 的界面上建立了原子级的 N-Cd-S 异质结构,促进了高效的电子转移;ii) 电子定向转移到 CdNCN 的(110)晶面上,促进了最佳的氢吸附并积极参与氢演化反应。这项研究提供了一种合成 CdNCN 材料的新方法,并为设计和制备创新的原子级复合半导体光催化剂提供了启示。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
33.30
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信