Two approaches for constructing multivariate injection models for prefilming airblast atomizers

IF 3.6 2区 工程技术 Q1 MECHANICS
Simon Holz , Maximilian Coblenz , Rainer Koch , Hans-Jörg Bauer , Oliver Grothe
{"title":"Two approaches for constructing multivariate injection models for prefilming airblast atomizers","authors":"Simon Holz ,&nbsp;Maximilian Coblenz ,&nbsp;Rainer Koch ,&nbsp;Hans-Jörg Bauer ,&nbsp;Oliver Grothe","doi":"10.1016/j.ijmultiphaseflow.2024.104999","DOIUrl":null,"url":null,"abstract":"<div><div>More realistic droplet starting conditions for Euler–Lagrangian simulations enable <em>e.g.</em> more precise soot prediction in jet engines. Up to now, mainly the droplet size distribution of sprays is considered, but not the multivariate dependence structure of droplet size, starting position and initial velocity. A novel concept for extracting multivariate spray data efficiently from detailed simulations of the atomizing process into high fidelity Euler–Lagrangian simulations of spray combustion is presented in this paper. Therefore, simulations of a prefilming airblast atomizer using the Smoothed Particle Hydrodynamics method are considered. The multivariate dependence structure in the spray is identified using rank transformation. Two models of different nature are proposed which are able to reproduce the multivariate dependence structure. The first model follows a data-driven approach using vine copulas and marginal distributions. In contrast, the second model is based on human knowledge and assumptions enabling deeper insights into the atomization process. Both models demonstrated to reproduce the multivariate character of the spray data effectively. An assessment of their capabilities reveals that the first model might be more suitable for spray data of annular injectors.</div></div>","PeriodicalId":339,"journal":{"name":"International Journal of Multiphase Flow","volume":"181 ","pages":"Article 104999"},"PeriodicalIF":3.6000,"publicationDate":"2024-09-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Multiphase Flow","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0301932224002763","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MECHANICS","Score":null,"Total":0}
引用次数: 0

Abstract

More realistic droplet starting conditions for Euler–Lagrangian simulations enable e.g. more precise soot prediction in jet engines. Up to now, mainly the droplet size distribution of sprays is considered, but not the multivariate dependence structure of droplet size, starting position and initial velocity. A novel concept for extracting multivariate spray data efficiently from detailed simulations of the atomizing process into high fidelity Euler–Lagrangian simulations of spray combustion is presented in this paper. Therefore, simulations of a prefilming airblast atomizer using the Smoothed Particle Hydrodynamics method are considered. The multivariate dependence structure in the spray is identified using rank transformation. Two models of different nature are proposed which are able to reproduce the multivariate dependence structure. The first model follows a data-driven approach using vine copulas and marginal distributions. In contrast, the second model is based on human knowledge and assumptions enabling deeper insights into the atomization process. Both models demonstrated to reproduce the multivariate character of the spray data effectively. An assessment of their capabilities reveals that the first model might be more suitable for spray data of annular injectors.

Abstract Image

构建预过滤喷气雾化器多元喷射模型的两种方法
在欧拉-拉格朗日模拟中采用更逼真的液滴起始条件可以更精确地预测喷气发动机中的烟尘。到目前为止,主要考虑的是喷雾的液滴大小分布,而没有考虑液滴大小、起始位置和初始速度的多元依赖结构。本文提出了一个新概念,即从雾化过程的详细模拟中有效提取多变量喷雾数据,并将其转化为喷雾燃烧的高保真欧拉-拉格朗日模拟。因此,本文考虑使用平滑粒子流体力学方法对预过滤喷气雾化器进行模拟。利用秩变换确定了喷雾中的多元依赖结构。提出了两个不同性质的模型,它们能够再现多元依赖结构。第一个模型采用数据驱动法,使用藤蔓共线和边际分布。相比之下,第二个模型基于人类知识和假设,能够更深入地了解雾化过程。这两个模型都有效地再现了喷雾数据的多变量特征。对两者能力的评估表明,第一个模型可能更适合环形喷射器的喷雾数据。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
7.30
自引率
10.50%
发文量
244
审稿时长
4 months
期刊介绍: The International Journal of Multiphase Flow publishes analytical, numerical and experimental articles of lasting interest. The scope of the journal includes all aspects of mass, momentum and energy exchange phenomena among different phases such as occur in disperse flows, gas–liquid and liquid–liquid flows, flows in porous media, boiling, granular flows and others. The journal publishes full papers, brief communications and conference announcements.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信