Finite-frequency model order reduction of linear and bilinear systems via low-rank approximation

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS
Qiu-Yan Song, Umair Zulfiqar, Xin Du
{"title":"Finite-frequency model order reduction of linear and bilinear systems via low-rank approximation","authors":"Qiu-Yan Song,&nbsp;Umair Zulfiqar,&nbsp;Xin Du","doi":"10.1016/j.cam.2024.116287","DOIUrl":null,"url":null,"abstract":"<div><div>In this paper, we first investigate the finite-frequency model order reduction for linear systems based on low-rank Gramian approximations. An efficient algorithm for computing low-rank approximations of the finite-frequency and frequency-dependent Gramians based on Laguerre functions is proposed. The approach constructs the low-rank decomposition factors of the finite-frequency Gramians or frequency-dependent Gramians through a recursive formula of Laguerre functions expansion coefficient vectors and then combines the low-rank square root method and frequency-dependent balanced truncation method to obtain the reduced-order models. In this process, it avoids dealing with the matrix-valued functions and solving the related (generalized) Lyapunov matrix equations directly, making them computationally efficient. Furthermore, the above method is successfully extended to bilinear systems, and a corresponding efficient computation method for low-rank approximations of the finite-frequency Gramians of bilinear systems is derived. Finally, some numerical simulations are provided to illustrate the effectiveness of our proposed algorithms.</div></div>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-09-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0377042724005351","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, we first investigate the finite-frequency model order reduction for linear systems based on low-rank Gramian approximations. An efficient algorithm for computing low-rank approximations of the finite-frequency and frequency-dependent Gramians based on Laguerre functions is proposed. The approach constructs the low-rank decomposition factors of the finite-frequency Gramians or frequency-dependent Gramians through a recursive formula of Laguerre functions expansion coefficient vectors and then combines the low-rank square root method and frequency-dependent balanced truncation method to obtain the reduced-order models. In this process, it avoids dealing with the matrix-valued functions and solving the related (generalized) Lyapunov matrix equations directly, making them computationally efficient. Furthermore, the above method is successfully extended to bilinear systems, and a corresponding efficient computation method for low-rank approximations of the finite-frequency Gramians of bilinear systems is derived. Finally, some numerical simulations are provided to illustrate the effectiveness of our proposed algorithms.
通过低阶近似降低线性和双线性系统的有限频率模型阶次
本文首先研究了基于低阶格拉米安近似的线性系统有限频率模型阶次缩减。本文提出了一种基于拉盖尔函数计算有限频率和频率相关格拉米安低阶近似值的高效算法。该方法通过拉盖尔函数展开系数向量的递推公式构建有限频率格拉米安或频率相关格拉米安的低阶分解因子,然后结合低阶平方根法和频率相关平衡截断法获得降阶模型。在此过程中,它避免了处理矩阵值函数和直接求解相关(广义)Lyapunov 矩阵方程,从而提高了计算效率。此外,上述方法还成功地扩展到了双线性系统,并推导出了相应的双线性系统有限频率格拉米安低阶近似的高效计算方法。最后,我们提供了一些数值模拟,以说明我们提出的算法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信