A posteriori error estimates and adaptivity for the IMEX BDF2 method for nonlinear parabolic equations

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS
Shuo Yang, Liutao Tian, Hongjiong Tian
{"title":"A posteriori error estimates and adaptivity for the IMEX BDF2 method for nonlinear parabolic equations","authors":"Shuo Yang,&nbsp;Liutao Tian,&nbsp;Hongjiong Tian","doi":"10.1016/j.cam.2024.116318","DOIUrl":null,"url":null,"abstract":"<div><div>In this paper, we establish optimal a posteriori error estimates for time discretizations by the IMEX two-step backward differentiation formula (BDF2) method for nonlinear parabolic equations. An effective tool for such derivation is appropriate second-order reconstructions of the piecewise linear approximate solution. We employ the second-order reconstructions to establish the upper and lower error bounds which depend only on the data of the problem and the discretization parameters. By means of the a posteriori error estimates, we design a time adaptive algorithm of IMEX BDF2 method. Numerical experiments for the Allen–Cahn equation with smooth and non-smooth initial data are performed to verify our theoretical results and demonstrate the efficiency of the time adaptive algorithm. In addition, we use the IMEX BDF2 method to solve the Navier–Stokes equations to test the validity of the a posteriori error estimates.</div></div>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0377042724005661","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, we establish optimal a posteriori error estimates for time discretizations by the IMEX two-step backward differentiation formula (BDF2) method for nonlinear parabolic equations. An effective tool for such derivation is appropriate second-order reconstructions of the piecewise linear approximate solution. We employ the second-order reconstructions to establish the upper and lower error bounds which depend only on the data of the problem and the discretization parameters. By means of the a posteriori error estimates, we design a time adaptive algorithm of IMEX BDF2 method. Numerical experiments for the Allen–Cahn equation with smooth and non-smooth initial data are performed to verify our theoretical results and demonstrate the efficiency of the time adaptive algorithm. In addition, we use the IMEX BDF2 method to solve the Navier–Stokes equations to test the validity of the a posteriori error estimates.
非线性抛物方程的 IMEX BDF2 方法的后验误差估计和适应性
本文通过 IMEX 两步反向微分公式 (BDF2) 方法为非线性抛物方程的时间离散化建立了最佳后验误差估计。这种推导的有效工具是对片断线性近似解进行适当的二阶重构。我们利用二阶重构建立误差上下限,误差上下限仅取决于问题数据和离散化参数。通过后验误差估计,我们设计了 IMEX BDF2 方法的时间自适应算法。我们对具有光滑和非光滑初始数据的 Allen-Cahn 方程进行了数值实验,以验证我们的理论结果,并证明时间自适应算法的效率。此外,我们还使用 IMEX BDF2 方法求解了 Navier-Stokes 方程,以检验后验误差估计的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信