{"title":"Investigating the effects of near-wall active vortex generators on heat transfer inside a channel","authors":"O. Damanafshan, Y. Amini, S.E. Habibi","doi":"10.1016/j.ijthermalsci.2024.109479","DOIUrl":null,"url":null,"abstract":"<div><div>Most of previous researches on enhancing the heat transfer rate in pipes and channels have focused on passive methods. This article introduces near wall active vortex generators (NWAVG) as a strong way to enhance the heat transfer rate from rectangular channels and simultaneously keep friction losses as low as possible. This article considers three different motion patterns for NWAVG at a constant Reynolds number of 1000. Also, the impact of different numbers of vortex generators and different parameters of each motion pattern on the Darcy friction factor, the Nusselt number and the overall hydrothermal efficiency are examined. The results show that the effect of vortex generators on the heat transfer rate increases significantly when they approach the channel wall. Moreover, the results show that the NWAVG can achieve an 185 % increase in the Nusselt number with an overall hydrothermal efficiency of 1.26.</div></div>","PeriodicalId":341,"journal":{"name":"International Journal of Thermal Sciences","volume":"208 ","pages":"Article 109479"},"PeriodicalIF":4.9000,"publicationDate":"2024-10-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Thermal Sciences","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S129007292400601X","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Most of previous researches on enhancing the heat transfer rate in pipes and channels have focused on passive methods. This article introduces near wall active vortex generators (NWAVG) as a strong way to enhance the heat transfer rate from rectangular channels and simultaneously keep friction losses as low as possible. This article considers three different motion patterns for NWAVG at a constant Reynolds number of 1000. Also, the impact of different numbers of vortex generators and different parameters of each motion pattern on the Darcy friction factor, the Nusselt number and the overall hydrothermal efficiency are examined. The results show that the effect of vortex generators on the heat transfer rate increases significantly when they approach the channel wall. Moreover, the results show that the NWAVG can achieve an 185 % increase in the Nusselt number with an overall hydrothermal efficiency of 1.26.
期刊介绍:
The International Journal of Thermal Sciences is a journal devoted to the publication of fundamental studies on the physics of transfer processes in general, with an emphasis on thermal aspects and also applied research on various processes, energy systems and the environment. Articles are published in English and French, and are subject to peer review.
The fundamental subjects considered within the scope of the journal are:
* Heat and relevant mass transfer at all scales (nano, micro and macro) and in all types of material (heterogeneous, composites, biological,...) and fluid flow
* Forced, natural or mixed convection in reactive or non-reactive media
* Single or multi–phase fluid flow with or without phase change
* Near–and far–field radiative heat transfer
* Combined modes of heat transfer in complex systems (for example, plasmas, biological, geological,...)
* Multiscale modelling
The applied research topics include:
* Heat exchangers, heat pipes, cooling processes
* Transport phenomena taking place in industrial processes (chemical, food and agricultural, metallurgical, space and aeronautical, automobile industries)
* Nano–and micro–technology for energy, space, biosystems and devices
* Heat transport analysis in advanced systems
* Impact of energy–related processes on environment, and emerging energy systems
The study of thermophysical properties of materials and fluids, thermal measurement techniques, inverse methods, and the developments of experimental methods are within the scope of the International Journal of Thermal Sciences which also covers the modelling, and numerical methods applied to thermal transfer.