{"title":"Quantifying the shear behavior of fine-grained soil with herbaceous plant roots under freeze-thaw conditions using X-ray CT scan","authors":"","doi":"10.1016/j.still.2024.106326","DOIUrl":null,"url":null,"abstract":"<div><div>This study investigates the reinforcement effect of Kentucky bluegrass roots on slope soil under freeze-thaw conditions, with a focus on the Hokkaido region of Japan. Using direct shear tests combined with X-ray CT scanning, we analyzed the impact of root parameters (such as root mass and volume) on the shear strength of root-soil composites. The results revealed that freeze-thaw cycle did not cause significant root breakage or diminish the root system's ability to stabilize the soil compared to non-freeze-thaw conditions. Root-soil samples demonstrated notable ductility during shear deformation, with shear stress continuing to increase after reaching peak values. In contrast, soil samples stabilized after reaching peak shear stress without further increase. Although no significant differences in shear behavior were observed between root-soil and soil samples in the initial shearing stage, the freeze-thaw cycle led to some consolidation in root-soil samples, reducing their resistance to elastic deformation. Moreover, longer root growth periods resulted in a more pronounced increase in shear stress. CT scan image reconstruction allowed us to quantify root system parameters, such as root volume and distribution near the shear plane, which showed a strong correlation with maximum shear stress. Our findings demonstrate the effectiveness of herbaceous plant roots, particularly Kentucky bluegrass, in maintaining soil stability under freeze-thaw conditions.</div></div>","PeriodicalId":49503,"journal":{"name":"Soil & Tillage Research","volume":null,"pages":null},"PeriodicalIF":6.1000,"publicationDate":"2024-10-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Soil & Tillage Research","FirstCategoryId":"97","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0167198724003271","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"SOIL SCIENCE","Score":null,"Total":0}
引用次数: 0
Abstract
This study investigates the reinforcement effect of Kentucky bluegrass roots on slope soil under freeze-thaw conditions, with a focus on the Hokkaido region of Japan. Using direct shear tests combined with X-ray CT scanning, we analyzed the impact of root parameters (such as root mass and volume) on the shear strength of root-soil composites. The results revealed that freeze-thaw cycle did not cause significant root breakage or diminish the root system's ability to stabilize the soil compared to non-freeze-thaw conditions. Root-soil samples demonstrated notable ductility during shear deformation, with shear stress continuing to increase after reaching peak values. In contrast, soil samples stabilized after reaching peak shear stress without further increase. Although no significant differences in shear behavior were observed between root-soil and soil samples in the initial shearing stage, the freeze-thaw cycle led to some consolidation in root-soil samples, reducing their resistance to elastic deformation. Moreover, longer root growth periods resulted in a more pronounced increase in shear stress. CT scan image reconstruction allowed us to quantify root system parameters, such as root volume and distribution near the shear plane, which showed a strong correlation with maximum shear stress. Our findings demonstrate the effectiveness of herbaceous plant roots, particularly Kentucky bluegrass, in maintaining soil stability under freeze-thaw conditions.
期刊介绍:
Soil & Tillage Research examines the physical, chemical and biological changes in the soil caused by tillage and field traffic. Manuscripts will be considered on aspects of soil science, physics, technology, mechanization and applied engineering for a sustainable balance among productivity, environmental quality and profitability. The following are examples of suitable topics within the scope of the journal of Soil and Tillage Research:
The agricultural and biosystems engineering associated with tillage (including no-tillage, reduced-tillage and direct drilling), irrigation and drainage, crops and crop rotations, fertilization, rehabilitation of mine spoils and processes used to modify soils. Soil change effects on establishment and yield of crops, growth of plants and roots, structure and erosion of soil, cycling of carbon and nutrients, greenhouse gas emissions, leaching, runoff and other processes that affect environmental quality. Characterization or modeling of tillage and field traffic responses, soil, climate, or topographic effects, soil deformation processes, tillage tools, traction devices, energy requirements, economics, surface and subsurface water quality effects, tillage effects on weed, pest and disease control, and their interactions.