Globally synchronous meteorite rain during the Middle Ordovician

IF 2.6 2区 地球科学 Q2 GEOGRAPHY, PHYSICAL
Shengchao Yang , Junxuan Fan , Christian M.Ø. Rasmussen , Xiao-Lei Wang , Zongyuan Sun , Yiying Deng
{"title":"Globally synchronous meteorite rain during the Middle Ordovician","authors":"Shengchao Yang ,&nbsp;Junxuan Fan ,&nbsp;Christian M.Ø. Rasmussen ,&nbsp;Xiao-Lei Wang ,&nbsp;Zongyuan Sun ,&nbsp;Yiying Deng","doi":"10.1016/j.palaeo.2024.112550","DOIUrl":null,"url":null,"abstract":"<div><div>A Middle Ordovician breakup of a L-chondrite asteroid parent body (LCPB) has been suggested to have facilitated both an ice age and a major radiation of marine life. This hypothesis, however, is debated as Baltic data show an offset between the events on Earth and the LCPB-associated meteorite rain. Here, we present the first SIMS U<img>Pb date (465.9 ± 3.3 Ma) from zircons in a bentonite from the Wangjiawan region, South China. We pinpoint the events in space, the LCPB breakup, to have occurred at 466.09 ± 3.3 Ma, and further estimate that the extraordinarily intense micrometeorite rain lasted 2.58 ± 0.27 Myr with an intensity of ∼2.9 × 10<sup>4</sup> grains/m<sup>2</sup>/Myr. This suggests that the influx intensity would likely have been too minimal to have had any discernable effect on either climate or biodiversity levels. Our U/Pb age from South China thus implies that the LCPB breakup was a synchronous global event, but was too insignificant in intensity, and further occurred after both the major climatic shift and biological radiation, indicating no relationship between them.</div></div>","PeriodicalId":19928,"journal":{"name":"Palaeogeography, Palaeoclimatology, Palaeoecology","volume":"655 ","pages":"Article 112550"},"PeriodicalIF":2.6000,"publicationDate":"2024-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Palaeogeography, Palaeoclimatology, Palaeoecology","FirstCategoryId":"89","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S003101822400539X","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"GEOGRAPHY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

A Middle Ordovician breakup of a L-chondrite asteroid parent body (LCPB) has been suggested to have facilitated both an ice age and a major radiation of marine life. This hypothesis, however, is debated as Baltic data show an offset between the events on Earth and the LCPB-associated meteorite rain. Here, we present the first SIMS UPb date (465.9 ± 3.3 Ma) from zircons in a bentonite from the Wangjiawan region, South China. We pinpoint the events in space, the LCPB breakup, to have occurred at 466.09 ± 3.3 Ma, and further estimate that the extraordinarily intense micrometeorite rain lasted 2.58 ± 0.27 Myr with an intensity of ∼2.9 × 104 grains/m2/Myr. This suggests that the influx intensity would likely have been too minimal to have had any discernable effect on either climate or biodiversity levels. Our U/Pb age from South China thus implies that the LCPB breakup was a synchronous global event, but was too insignificant in intensity, and further occurred after both the major climatic shift and biological radiation, indicating no relationship between them.
中奥陶纪全球同步陨石雨
有人认为,中奥陶纪一颗 L 型软玉小行星母体(LCPB)的碎裂促进了冰河时期和海洋生物的大辐射。然而,由于波罗的海数据显示地球上发生的事件与 LCPB 相关陨石雨之间存在偏移,这一假说引起了争论。在这里,我们首次展示了来自中国南方王家湾地区膨润土中锆石的 SIMS UPb 时间(465.9 ± 3.3 Ma)。我们将空间事件--LCPB破裂精确定位为发生在466.09 ± 3.3 Ma,并进一步估算出异常强烈的微陨石雨持续了2.58 ± 0.27 Myr,强度为∼2.9 × 104粒/m2/Myr。这表明,微陨石雨的强度可能太小,无法对气候或生物多样性水平产生任何明显的影响。因此,华南地区的U/Pb年代表明,LCPB破裂是一个全球同步事件,但其强度太小,而且发生在气候大转变和生物大辐射之后,表明两者之间没有关系。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
5.90
自引率
10.00%
发文量
398
审稿时长
3.8 months
期刊介绍: Palaeogeography, Palaeoclimatology, Palaeoecology is an international medium for the publication of high quality and multidisciplinary, original studies and comprehensive reviews in the field of palaeo-environmental geology. The journal aims at bringing together data with global implications from research in the many different disciplines involved in palaeo-environmental investigations. By cutting across the boundaries of established sciences, it provides an interdisciplinary forum where issues of general interest can be discussed.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信