Timm O. Koller, Max J. Berger, Martino Morici, Helge Paternoga, Timur Bulatov, Adriana Di Stasi, Tam Dang, Andi Mainz, Karoline Raulf, Caillan Crowe-McAuliffe, Marco Scocchi, Mario Mardirossian, Bertrand Beckert, Nora Vázquez-Laslop, Alexander S. Mankin, Roderich D. Süssmuth, Daniel N. Wilson
{"title":"Paenilamicins are context-specific translocation inhibitors of protein synthesis","authors":"Timm O. Koller, Max J. Berger, Martino Morici, Helge Paternoga, Timur Bulatov, Adriana Di Stasi, Tam Dang, Andi Mainz, Karoline Raulf, Caillan Crowe-McAuliffe, Marco Scocchi, Mario Mardirossian, Bertrand Beckert, Nora Vázquez-Laslop, Alexander S. Mankin, Roderich D. Süssmuth, Daniel N. Wilson","doi":"10.1038/s41589-024-01752-9","DOIUrl":null,"url":null,"abstract":"The paenilamicins are a group of hybrid nonribosomal peptide–polyketide compounds produced by the honey bee pathogen Paenibacillus larvae that display activity against Gram-positive pathogens, such as Staphylococcus aureus. While paenilamicins have been shown to inhibit protein synthesis, their mechanism of action has remained unclear. Here we determine structures of paenilamicin PamB2-stalled ribosomes, revealing a unique binding site on the small 30S subunit located between the A- and P-site transfer RNAs (tRNAs). In addition to providing a precise description of interactions of PamB2 with the ribosome, the structures also rationalize the resistance mechanisms used by P. larvae. We further demonstrate that PamB2 interferes with the translocation of messenger RNA and tRNAs through the ribosome during translation elongation, and that this inhibitory activity is influenced by the presence of modifications at position 37 of the A-site tRNA. Collectively, our study defines the paenilamicins as a class of context-specific translocation inhibitors. The paenilamicins are hybrid nonribosomal peptide–polyketide compounds that inhibit protein synthesis. Here the authors reveal that paenilamicins bind to a unique site on the ribosome, where they interfere with the translocation of mRNA and tRNAs during elongation.","PeriodicalId":18832,"journal":{"name":"Nature chemical biology","volume":"20 12","pages":"1691-1700"},"PeriodicalIF":12.9000,"publicationDate":"2024-10-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s41589-024-01752-9.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature chemical biology","FirstCategoryId":"99","ListUrlMain":"https://www.nature.com/articles/s41589-024-01752-9","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
The paenilamicins are a group of hybrid nonribosomal peptide–polyketide compounds produced by the honey bee pathogen Paenibacillus larvae that display activity against Gram-positive pathogens, such as Staphylococcus aureus. While paenilamicins have been shown to inhibit protein synthesis, their mechanism of action has remained unclear. Here we determine structures of paenilamicin PamB2-stalled ribosomes, revealing a unique binding site on the small 30S subunit located between the A- and P-site transfer RNAs (tRNAs). In addition to providing a precise description of interactions of PamB2 with the ribosome, the structures also rationalize the resistance mechanisms used by P. larvae. We further demonstrate that PamB2 interferes with the translocation of messenger RNA and tRNAs through the ribosome during translation elongation, and that this inhibitory activity is influenced by the presence of modifications at position 37 of the A-site tRNA. Collectively, our study defines the paenilamicins as a class of context-specific translocation inhibitors. The paenilamicins are hybrid nonribosomal peptide–polyketide compounds that inhibit protein synthesis. Here the authors reveal that paenilamicins bind to a unique site on the ribosome, where they interfere with the translocation of mRNA and tRNAs during elongation.
期刊介绍:
Nature Chemical Biology stands as an esteemed international monthly journal, offering a prominent platform for the chemical biology community to showcase top-tier original research and commentary. Operating at the crossroads of chemistry, biology, and related disciplines, chemical biology utilizes scientific ideas and approaches to comprehend and manipulate biological systems with molecular precision.
The journal embraces contributions from the growing community of chemical biologists, encompassing insights from chemists applying principles and tools to biological inquiries and biologists striving to comprehend and control molecular-level biological processes. We prioritize studies unveiling significant conceptual or practical advancements in areas where chemistry and biology intersect, emphasizing basic research, especially those reporting novel chemical or biological tools and offering profound molecular-level insights into underlying biological mechanisms.
Nature Chemical Biology also welcomes manuscripts describing applied molecular studies at the chemistry-biology interface due to the broad utility of chemical biology approaches in manipulating or engineering biological systems. Irrespective of scientific focus, we actively seek submissions that creatively blend chemistry and biology, particularly those providing substantial conceptual or methodological breakthroughs with the potential to open innovative research avenues. The journal maintains a robust and impartial review process, emphasizing thorough chemical and biological characterization.