Julia Garcia Mancebo, Kristen Sack, Jay Hartford, Saffron Dominguez, Michelle Balcarcel-Monzon, Elizabeth Chartier, Tien Nguyen, Alexis R. Cole, Francesca Sperotto, David M. Harrild, Brian D. Polizzotti, Allen D. Everett, Alan B. Packard, Jason Dearling, Arthur G. Nedder, Simon Warfield, Edward Yang, Hart G. W. Lidov, John N. Kheir, Yifeng Peng
{"title":"Systemically injected oxygen within rapidly dissolving microbubbles improves the outcomes of severe hypoxaemia in swine","authors":"Julia Garcia Mancebo, Kristen Sack, Jay Hartford, Saffron Dominguez, Michelle Balcarcel-Monzon, Elizabeth Chartier, Tien Nguyen, Alexis R. Cole, Francesca Sperotto, David M. Harrild, Brian D. Polizzotti, Allen D. Everett, Alan B. Packard, Jason Dearling, Arthur G. Nedder, Simon Warfield, Edward Yang, Hart G. W. Lidov, John N. Kheir, Yifeng Peng","doi":"10.1038/s41551-024-01266-8","DOIUrl":null,"url":null,"abstract":"Acute respiratory failure can cause profound hypoxaemia that leads to organ injury or death within minutes. When conventional interventions are ineffective, the intravenous administration of oxygen can rescue patients from severe hypoxaemia, but at the risk of microvascular obstruction and of toxicity of the carrier material. Here we describe polymeric microbubbles as carriers of high volumes of oxygen (350–500 ml of oxygen per litre of foam) that are stable in storage yet quickly dissolve following intravenous injection, reverting to their soluble and excretable molecular constituents. In swine with profound hypoxaemia owing to acute and temporary (12 min) upper-airway obstruction, the microbubble-mediated delivery of oxygen led to: the maintenance of critical oxygenation, lowered burdens of cardiac arrest, improved survival, and substantially improved neurologic and kidney function in surviving animals. Our findings underscore the importance of maintaining a critical threshold of oxygenation and the promise of injectable oxygen as a viable therapy in acute and temporary hypoxaemic crises. The intravenous injection of oxygen via polymeric microbubbles that are stable in storage yet quickly dissolve following intravenous injection led to the maintenance of critical oxygenation and to improved survival in swine with profound hypoxaemia.","PeriodicalId":19063,"journal":{"name":"Nature Biomedical Engineering","volume":"8 11","pages":"1396-1411"},"PeriodicalIF":26.8000,"publicationDate":"2024-10-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s41551-024-01266-8.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Biomedical Engineering","FirstCategoryId":"5","ListUrlMain":"https://www.nature.com/articles/s41551-024-01266-8","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Acute respiratory failure can cause profound hypoxaemia that leads to organ injury or death within minutes. When conventional interventions are ineffective, the intravenous administration of oxygen can rescue patients from severe hypoxaemia, but at the risk of microvascular obstruction and of toxicity of the carrier material. Here we describe polymeric microbubbles as carriers of high volumes of oxygen (350–500 ml of oxygen per litre of foam) that are stable in storage yet quickly dissolve following intravenous injection, reverting to their soluble and excretable molecular constituents. In swine with profound hypoxaemia owing to acute and temporary (12 min) upper-airway obstruction, the microbubble-mediated delivery of oxygen led to: the maintenance of critical oxygenation, lowered burdens of cardiac arrest, improved survival, and substantially improved neurologic and kidney function in surviving animals. Our findings underscore the importance of maintaining a critical threshold of oxygenation and the promise of injectable oxygen as a viable therapy in acute and temporary hypoxaemic crises. The intravenous injection of oxygen via polymeric microbubbles that are stable in storage yet quickly dissolve following intravenous injection led to the maintenance of critical oxygenation and to improved survival in swine with profound hypoxaemia.
期刊介绍:
Nature Biomedical Engineering is an online-only monthly journal that was launched in January 2017. It aims to publish original research, reviews, and commentary focusing on applied biomedicine and health technology. The journal targets a diverse audience, including life scientists who are involved in developing experimental or computational systems and methods to enhance our understanding of human physiology. It also covers biomedical researchers and engineers who are engaged in designing or optimizing therapies, assays, devices, or procedures for diagnosing or treating diseases. Additionally, clinicians, who make use of research outputs to evaluate patient health or administer therapy in various clinical settings and healthcare contexts, are also part of the target audience.