{"title":"Peripheral Substitution Engineering of MR-TADF Emitters Embedded With B‒N Covalent Bond Towards Efficient BT.2020 Blue Electroluminescence","authors":"Danrui Wan, Jianping Zhou, Ying Yang, Guoyun Meng, Dongdong Zhang, Lian Duan, Junqiao Ding","doi":"10.1002/adma.202409706","DOIUrl":null,"url":null,"abstract":"<p>Compared with the classical boron/nitrogen (B/N) doped ones, multiple-resonance thermally activated delayed fluorescence (MR-TADF) emitters embedded with B–N covalent bond behave a significantly blue-shifted narrowband TADF, and thus show a greater potential in ultrapure blue organic light-emitting diodes (OLEDs). As a proof of concept, herein a peripheral substitution engineering is demonstrated based on such a B‒N embedded parent core. The simple approach is found to ensure easy synthesis via a one-pot lithium-free borylation-annulation, manipulate the excited states through different electronic coupling between core and substituent, and introduce the steric hindrance to minimize the unwanted spectral broadening. Impressively, ultrapure blue OLEDs are realized to give a high external quantum efficiency of 20.3% together with Commission Internationale de l’Éclairage coordinates of (0.152, 0.046). The performance is well competent with those of B/N doped MR-TADF emitters, clearly highlighting that the B‒N embedded framework is a novel promising paradigm towards efficient BT.2020 blue standard.</p>","PeriodicalId":114,"journal":{"name":"Advanced Materials","volume":"36 49","pages":""},"PeriodicalIF":27.4000,"publicationDate":"2024-10-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Materials","FirstCategoryId":"88","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/adma.202409706","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Compared with the classical boron/nitrogen (B/N) doped ones, multiple-resonance thermally activated delayed fluorescence (MR-TADF) emitters embedded with B–N covalent bond behave a significantly blue-shifted narrowband TADF, and thus show a greater potential in ultrapure blue organic light-emitting diodes (OLEDs). As a proof of concept, herein a peripheral substitution engineering is demonstrated based on such a B‒N embedded parent core. The simple approach is found to ensure easy synthesis via a one-pot lithium-free borylation-annulation, manipulate the excited states through different electronic coupling between core and substituent, and introduce the steric hindrance to minimize the unwanted spectral broadening. Impressively, ultrapure blue OLEDs are realized to give a high external quantum efficiency of 20.3% together with Commission Internationale de l’Éclairage coordinates of (0.152, 0.046). The performance is well competent with those of B/N doped MR-TADF emitters, clearly highlighting that the B‒N embedded framework is a novel promising paradigm towards efficient BT.2020 blue standard.
期刊介绍:
Advanced Materials, one of the world's most prestigious journals and the foundation of the Advanced portfolio, is the home of choice for best-in-class materials science for more than 30 years. Following this fast-growing and interdisciplinary field, we are considering and publishing the most important discoveries on any and all materials from materials scientists, chemists, physicists, engineers as well as health and life scientists and bringing you the latest results and trends in modern materials-related research every week.