{"title":"Trait-based ecology, trait-free ecology, and in between","authors":"Mark Westoby","doi":"10.1111/nph.20197","DOIUrl":null,"url":null,"abstract":"Trait-based ecology has become a popular phrase. But all species have traits, and their contributions to ecological processes are governed by those traits. So then, is not all ecology trait-based? Actually, there do exist areas of ecology that are consciously trait-free, such as neutral theory and species abundance distributions. But much of ecology could be considered actually or potentially trait-based. A spectrum is described, from trait-free through trait-implicit and trait-explicit to trait-centric. Trait-centric ecology includes positioning ecological strategies along trait dimensions, with a view to inferring commonalities and to generalizing from species studied in more detail. Trait-explicit includes physiological and functional ecology, and areas of community ecology and ecosystem function that invoke traits. Trait-implicit topics are those where it is important that species are different, but formulations did not initially characterize the differences via traits. Subsequently, strands within these trait-implicit topics have often moved towards making use of species traits, so the boundary with trait-explicit is permeable. Trait-based ecology is productive because of the dialogue between understanding processes in detail, via traits that relate most closely, and generalizing across many species, via traits that can be compared widely. An enduring key question for trait-based ecology is which traits for which processes.","PeriodicalId":214,"journal":{"name":"New Phytologist","volume":"13 1","pages":""},"PeriodicalIF":8.3000,"publicationDate":"2024-10-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"New Phytologist","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1111/nph.20197","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Trait-based ecology has become a popular phrase. But all species have traits, and their contributions to ecological processes are governed by those traits. So then, is not all ecology trait-based? Actually, there do exist areas of ecology that are consciously trait-free, such as neutral theory and species abundance distributions. But much of ecology could be considered actually or potentially trait-based. A spectrum is described, from trait-free through trait-implicit and trait-explicit to trait-centric. Trait-centric ecology includes positioning ecological strategies along trait dimensions, with a view to inferring commonalities and to generalizing from species studied in more detail. Trait-explicit includes physiological and functional ecology, and areas of community ecology and ecosystem function that invoke traits. Trait-implicit topics are those where it is important that species are different, but formulations did not initially characterize the differences via traits. Subsequently, strands within these trait-implicit topics have often moved towards making use of species traits, so the boundary with trait-explicit is permeable. Trait-based ecology is productive because of the dialogue between understanding processes in detail, via traits that relate most closely, and generalizing across many species, via traits that can be compared widely. An enduring key question for trait-based ecology is which traits for which processes.
期刊介绍:
New Phytologist is an international electronic journal published 24 times a year. It is owned by the New Phytologist Foundation, a non-profit-making charitable organization dedicated to promoting plant science. The journal publishes excellent, novel, rigorous, and timely research and scholarship in plant science and its applications. The articles cover topics in five sections: Physiology & Development, Environment, Interaction, Evolution, and Transformative Plant Biotechnology. These sections encompass intracellular processes, global environmental change, and encourage cross-disciplinary approaches. The journal recognizes the use of techniques from molecular and cell biology, functional genomics, modeling, and system-based approaches in plant science. Abstracting and Indexing Information for New Phytologist includes Academic Search, AgBiotech News & Information, Agroforestry Abstracts, Biochemistry & Biophysics Citation Index, Botanical Pesticides, CAB Abstracts®, Environment Index, Global Health, and Plant Breeding Abstracts, and others.