Selective Glycan Presentation in Liquid-Ordered or -Disordered Membrane Phases and its Effect on Lectin Binding

IF 16.1 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Luca-Cesare Blawitzki, Cornelia Monzel, Stephan Schmidt, Laura Hartmann
{"title":"Selective Glycan Presentation in Liquid-Ordered or -Disordered Membrane Phases and its Effect on Lectin Binding","authors":"Luca-Cesare Blawitzki, Cornelia Monzel, Stephan Schmidt, Laura Hartmann","doi":"10.1002/anie.202414847","DOIUrl":null,"url":null,"abstract":"Glycan-protein interactions play a key role in various biological processes from fertilization to infections. Many of these interactions take place at the glycocalyx – a heavily glycosylated layer at the cell surface. Despite its significance, studying the glycocalyx remains challenging due to its complex, dynamic, and heterogeneous nature. This study introduces a glycocalyx model allowing for the first time to control spatial organization and heterogeneity of the glycan moieties. Glycan-mimetics with lipid-moieties that partition into either liquid-ordered (Lo, lipid rafts) or liquid-disordered (Ld) phases of giant unilamellar vesicles (GUVs), which serve as simplified cell membrane models micking lipid rafts, are developed. This phase-specific allocation allows controlled placement of glycan motifs in distinct membrane environments, creating heteromultivalent systems that replicate the natural glycocalyx's complexity. We show that phase localization of glycan mimetics significantly influences recruitment of protein receptors to the membrane. Glycan-conjugates in the ordered phase demonstrate enhanced lectin binding, supporting the idea that raft-like domains facilitate stronger receptor interactions. This study provides a platform for systematically investigating spatial and dynamic presentation of glycans in biological systems and presents the first experimental evidence that glycan accumulation in lipid rafts enhances receptor binding affinity, offering deeper insights into the glycocalyx's functional mechanisms.","PeriodicalId":125,"journal":{"name":"Angewandte Chemie International Edition","volume":null,"pages":null},"PeriodicalIF":16.1000,"publicationDate":"2024-10-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Angewandte Chemie International Edition","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1002/anie.202414847","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Glycan-protein interactions play a key role in various biological processes from fertilization to infections. Many of these interactions take place at the glycocalyx – a heavily glycosylated layer at the cell surface. Despite its significance, studying the glycocalyx remains challenging due to its complex, dynamic, and heterogeneous nature. This study introduces a glycocalyx model allowing for the first time to control spatial organization and heterogeneity of the glycan moieties. Glycan-mimetics with lipid-moieties that partition into either liquid-ordered (Lo, lipid rafts) or liquid-disordered (Ld) phases of giant unilamellar vesicles (GUVs), which serve as simplified cell membrane models micking lipid rafts, are developed. This phase-specific allocation allows controlled placement of glycan motifs in distinct membrane environments, creating heteromultivalent systems that replicate the natural glycocalyx's complexity. We show that phase localization of glycan mimetics significantly influences recruitment of protein receptors to the membrane. Glycan-conjugates in the ordered phase demonstrate enhanced lectin binding, supporting the idea that raft-like domains facilitate stronger receptor interactions. This study provides a platform for systematically investigating spatial and dynamic presentation of glycans in biological systems and presents the first experimental evidence that glycan accumulation in lipid rafts enhances receptor binding affinity, offering deeper insights into the glycocalyx's functional mechanisms.
液态有序或无序膜相中的选择性聚糖呈现及其对连接蛋白结合的影响
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
26.60
自引率
6.60%
发文量
3549
审稿时长
1.5 months
期刊介绍: Angewandte Chemie, a journal of the German Chemical Society (GDCh), maintains a leading position among scholarly journals in general chemistry with an impressive Impact Factor of 16.6 (2022 Journal Citation Reports, Clarivate, 2023). Published weekly in a reader-friendly format, it features new articles almost every day. Established in 1887, Angewandte Chemie is a prominent chemistry journal, offering a dynamic blend of Review-type articles, Highlights, Communications, and Research Articles on a weekly basis, making it unique in the field.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信