Humidity-Induced Degradation Mapping of Pt3Co ORR Catalyst for PEFC by In-Operando Electrochemistry and Ex Situ SAXS

IF 13 2区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Small Pub Date : 2024-10-16 DOI:10.1002/smll.202407591
Joel Mata Edjokola, Marco Bogar, Maximillian Grandi, Rodolfo Taccani, Heinz Amenitsch, Marjan Marinšek, Viktor Hacker, Merit Bodner
{"title":"Humidity-Induced Degradation Mapping of Pt3Co ORR Catalyst for PEFC by In-Operando Electrochemistry and Ex Situ SAXS","authors":"Joel Mata Edjokola, Marco Bogar, Maximillian Grandi, Rodolfo Taccani, Heinz Amenitsch, Marjan Marinšek, Viktor Hacker, Merit Bodner","doi":"10.1002/smll.202407591","DOIUrl":null,"url":null,"abstract":"Understanding the degradation mechanisms of Pt-alloy catalysts is crucial for enhancing their durability. This study investigates the impact of relative humidity on Pt and Pt<sub>3</sub>Co catalysts using potential-cycling-based accelerated stress tests. Two conditions are investigated: 100% relative humidity on both sides, and a gradient with 30% at the anode and over 100% at the cathode. Pt<sub>3</sub>Co demonstrates sensitivity, with 77% performance loss and reductions in electrocatalyst surface area. Results demonstrate a 30% decrease in potential loss for Pt catalysts and a 77% increase for Pt<sub>3</sub>Co catalysts, indicating significant performance degradation in high humidity conditions, with Pt<sub>3</sub>Co exhibiting greater sensitivity. Measurements of electrochemically active surface area reinforce these findings. Resistance analysis using electrochemical impedance spectroscopy using equivalent circuit modeling reveals a threefold increase in Pt<sub>3</sub>Co MEAs' cathode charge transfer resistance and mass transport resistance during accelerated stress tests. Local current distribution analysis highlights differences between Pt catalyst and Pt<sub>3</sub>Co, with the latter displaying dealloying effects. Small-angle X-ray scattering reveals changes in particle and cluster sizes, indicating structural changes. Scanning electron microscopy highlights catalyst and membrane thickness variations, suggesting heterogeneity in Pt<sub>3</sub>Co. Under humidity gradients, Ostwald ripening plays a significant role in altering the catalyst's Pt<sub>3</sub>Co structure and subsequently impacting its performance.","PeriodicalId":228,"journal":{"name":"Small","volume":null,"pages":null},"PeriodicalIF":13.0000,"publicationDate":"2024-10-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Small","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/smll.202407591","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Understanding the degradation mechanisms of Pt-alloy catalysts is crucial for enhancing their durability. This study investigates the impact of relative humidity on Pt and Pt3Co catalysts using potential-cycling-based accelerated stress tests. Two conditions are investigated: 100% relative humidity on both sides, and a gradient with 30% at the anode and over 100% at the cathode. Pt3Co demonstrates sensitivity, with 77% performance loss and reductions in electrocatalyst surface area. Results demonstrate a 30% decrease in potential loss for Pt catalysts and a 77% increase for Pt3Co catalysts, indicating significant performance degradation in high humidity conditions, with Pt3Co exhibiting greater sensitivity. Measurements of electrochemically active surface area reinforce these findings. Resistance analysis using electrochemical impedance spectroscopy using equivalent circuit modeling reveals a threefold increase in Pt3Co MEAs' cathode charge transfer resistance and mass transport resistance during accelerated stress tests. Local current distribution analysis highlights differences between Pt catalyst and Pt3Co, with the latter displaying dealloying effects. Small-angle X-ray scattering reveals changes in particle and cluster sizes, indicating structural changes. Scanning electron microscopy highlights catalyst and membrane thickness variations, suggesting heterogeneity in Pt3Co. Under humidity gradients, Ostwald ripening plays a significant role in altering the catalyst's Pt3Co structure and subsequently impacting its performance.

Abstract Image

通过室内电化学和原位外 SAXS 绘制 PEFC 用 Pt3Co ORR 催化剂的湿度诱导降解图谱
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Small
Small 工程技术-材料科学:综合
CiteScore
17.70
自引率
3.80%
发文量
1830
审稿时长
2.1 months
期刊介绍: Small serves as an exceptional platform for both experimental and theoretical studies in fundamental and applied interdisciplinary research at the nano- and microscale. The journal offers a compelling mix of peer-reviewed Research Articles, Reviews, Perspectives, and Comments. With a remarkable 2022 Journal Impact Factor of 13.3 (Journal Citation Reports from Clarivate Analytics, 2023), Small remains among the top multidisciplinary journals, covering a wide range of topics at the interface of materials science, chemistry, physics, engineering, medicine, and biology. Small's readership includes biochemists, biologists, biomedical scientists, chemists, engineers, information technologists, materials scientists, physicists, and theoreticians alike.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信