Nanofluid channels mitigated Zn2+ concentration polarization prolonged over 30 times lifespan for reversible zinc anodes

IF 18.9 1区 材料科学 Q1 CHEMISTRY, PHYSICAL
Jingying Li , Kui Xu , Jia Yao , Yiyuan Yang , Ziang Wu , Jieqiong Zhang , Xu Chen , Junjie Zheng , Yin Yang , Xingtai Liu , Xiaofang Wang , Yi Gan , Wei Hu , Lin Lv , Guokun Ma , Li Tao , Hanbin Wang , Jun Zhang , Hao Wang , Houzhao Wan
{"title":"Nanofluid channels mitigated Zn2+ concentration polarization prolonged over 30 times lifespan for reversible zinc anodes","authors":"Jingying Li ,&nbsp;Kui Xu ,&nbsp;Jia Yao ,&nbsp;Yiyuan Yang ,&nbsp;Ziang Wu ,&nbsp;Jieqiong Zhang ,&nbsp;Xu Chen ,&nbsp;Junjie Zheng ,&nbsp;Yin Yang ,&nbsp;Xingtai Liu ,&nbsp;Xiaofang Wang ,&nbsp;Yi Gan ,&nbsp;Wei Hu ,&nbsp;Lin Lv ,&nbsp;Guokun Ma ,&nbsp;Li Tao ,&nbsp;Hanbin Wang ,&nbsp;Jun Zhang ,&nbsp;Hao Wang ,&nbsp;Houzhao Wan","doi":"10.1016/j.ensm.2024.103844","DOIUrl":null,"url":null,"abstract":"<div><div>Despite interfacial engineering protects zinc anode from electrolyte corrosion, the suppressed kinetics process on the anode surface/interface circumscribes their cyclic stability, especially dendritic growth induced by ion concentration gradients. Here, the zinophilic nanofluid channels (ZNC) protective layer on zinc surface are designed for the rapid Zn<sup>2+</sup> transport kinetic in the reversible cycling process. The ZNC demonstrates high separation pressure between ions and the channel surface due to the capillary effect, allowing Zn<sup>2+</sup> to quickly migrate along the channel wall (Zn<sup>2+</sup> transference numbers up to 0.72). Therefore, the unique channel modules alleviate concentration polarization from rapid Zn<sup>2+</sup> consumption and maintain uniform deposition of Zn ions. Consequently, The ZNC protective layer anode exhibits significantly improved cycle life by &gt;30 times (over 4000 h at 1 mA cm<sup>−2</sup>) that of bare Zn. The full battery exhibits stable cycling performance with excellent capacity retention (∼100 %) after 5000 cycles. Our work provides innovative insights into the role of nanofluids in improving the stability of zinc anodes, offering enlightening perspectives for long-cycle life zinc-based batteries.</div></div>","PeriodicalId":306,"journal":{"name":"Energy Storage Materials","volume":"73 ","pages":"Article 103844"},"PeriodicalIF":18.9000,"publicationDate":"2024-10-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Energy Storage Materials","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2405829724006706","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Despite interfacial engineering protects zinc anode from electrolyte corrosion, the suppressed kinetics process on the anode surface/interface circumscribes their cyclic stability, especially dendritic growth induced by ion concentration gradients. Here, the zinophilic nanofluid channels (ZNC) protective layer on zinc surface are designed for the rapid Zn2+ transport kinetic in the reversible cycling process. The ZNC demonstrates high separation pressure between ions and the channel surface due to the capillary effect, allowing Zn2+ to quickly migrate along the channel wall (Zn2+ transference numbers up to 0.72). Therefore, the unique channel modules alleviate concentration polarization from rapid Zn2+ consumption and maintain uniform deposition of Zn ions. Consequently, The ZNC protective layer anode exhibits significantly improved cycle life by >30 times (over 4000 h at 1 mA cm−2) that of bare Zn. The full battery exhibits stable cycling performance with excellent capacity retention (∼100 %) after 5000 cycles. Our work provides innovative insights into the role of nanofluids in improving the stability of zinc anodes, offering enlightening perspectives for long-cycle life zinc-based batteries.
纳米流体通道减轻了 Zn2+ 浓度极化,使可逆锌阳极的寿命延长了 30 多倍
尽管界面工程可保护锌阳极免受电解液腐蚀,但阳极表面/界面上的抑制动力学过程限制了其循环稳定性,特别是离子浓度梯度引起的树枝状生长。在此,我们在锌表面设计了亲锌纳米流体通道(ZNC)保护层,以便在可逆循环过程中实现快速的 Zn2+ 传输动力学。由于毛细管效应,ZNC 在离子和通道表面之间显示出很高的分离压力,使 Zn2+ 沿着通道壁快速迁移(Zn2+ 迁移数高达 0.72)。因此,独特的通道模块缓解了 Zn2+ 快速消耗造成的浓度极化,并保持了 Zn 离子的均匀沉积。因此,ZNC 保护层阳极的循环寿命显著提高,是裸锌的 30 多倍(1 mA cm-2 时超过 4000 小时)。完整的电池在循环 5000 次后显示出稳定的循环性能和出色的容量保持率(∼100%)。我们的工作为纳米流体在提高锌阳极稳定性方面的作用提供了创新性见解,为锌基电池的长循环寿命提供了富有启发性的前景。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Energy Storage Materials
Energy Storage Materials Materials Science-General Materials Science
CiteScore
33.00
自引率
5.90%
发文量
652
审稿时长
27 days
期刊介绍: Energy Storage Materials is a global interdisciplinary journal dedicated to sharing scientific and technological advancements in materials and devices for advanced energy storage and related energy conversion, such as in metal-O2 batteries. The journal features comprehensive research articles, including full papers and short communications, as well as authoritative feature articles and reviews by leading experts in the field. Energy Storage Materials covers a wide range of topics, including the synthesis, fabrication, structure, properties, performance, and technological applications of energy storage materials. Additionally, the journal explores strategies, policies, and developments in the field of energy storage materials and devices for sustainable energy. Published papers are selected based on their scientific and technological significance, their ability to provide valuable new knowledge, and their relevance to the international research community.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信