Metal-lattice-heredity synthesis of single-crystalline 2D transition metal oxides

IF 17.3 1区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY
Matter Pub Date : 2024-10-16 DOI:10.1016/j.matt.2024.09.017
Junyang Tan, Jingwei Wang, Shengnan Li, Huiyu Nong, Shengfeng Zeng, Xiaolong Zou, Bilu Liu, Hui-Ming Cheng
{"title":"Metal-lattice-heredity synthesis of single-crystalline 2D transition metal oxides","authors":"Junyang Tan, Jingwei Wang, Shengnan Li, Huiyu Nong, Shengfeng Zeng, Xiaolong Zou, Bilu Liu, Hui-Ming Cheng","doi":"10.1016/j.matt.2024.09.017","DOIUrl":null,"url":null,"abstract":"Two-dimensional (2D) transition metal oxides (TMOs) have attracted much interest because of their unusual properties and high-temperature stability. However, due to isotropic bonding in all three dimensions and surface energy constraints, the direct synthesis of 2D TMOs with high crystal quality is challenging. Here, we develop a metal-lattice-heredity (MLH) strategy for synthesizing ultrathin TMO single crystals (e.g., Fe<sub>2</sub>O<sub>3</sub>) with tunable properties on SiO<sub>2</sub>/Si substrates. The MLH starts with chemical vapor deposition-grown 2D transition metal dichalcogenides (TMDs), followed by unique sequential sulfur-to-oxygen substitution reactions to obtain TMOs, where metal atoms retain their original lattice arrangement and symmetry. Such a process results in growing single-crystalline TMOs coinciding with the morphology and thickness of TMD templates, as supported by <em>in situ</em> optical studies and atomic-resolved imaging. The method can be used to grow many 2D TMOs, including Fe<sub>2</sub>O<sub>3</sub>, V<sub>2</sub>O<sub>5</sub>, Cr<sub>2</sub>O<sub>3</sub>, Co<sub>3</sub>O<sub>4</sub>, and NiO, with band gaps ranging from the near-infrared to the near-UV.","PeriodicalId":388,"journal":{"name":"Matter","volume":"58 1","pages":""},"PeriodicalIF":17.3000,"publicationDate":"2024-10-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Matter","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1016/j.matt.2024.09.017","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Two-dimensional (2D) transition metal oxides (TMOs) have attracted much interest because of their unusual properties and high-temperature stability. However, due to isotropic bonding in all three dimensions and surface energy constraints, the direct synthesis of 2D TMOs with high crystal quality is challenging. Here, we develop a metal-lattice-heredity (MLH) strategy for synthesizing ultrathin TMO single crystals (e.g., Fe2O3) with tunable properties on SiO2/Si substrates. The MLH starts with chemical vapor deposition-grown 2D transition metal dichalcogenides (TMDs), followed by unique sequential sulfur-to-oxygen substitution reactions to obtain TMOs, where metal atoms retain their original lattice arrangement and symmetry. Such a process results in growing single-crystalline TMOs coinciding with the morphology and thickness of TMD templates, as supported by in situ optical studies and atomic-resolved imaging. The method can be used to grow many 2D TMOs, including Fe2O3, V2O5, Cr2O3, Co3O4, and NiO, with band gaps ranging from the near-infrared to the near-UV.

Abstract Image

单晶二维过渡金属氧化物的金属晶格heredity合成
二维(2D)过渡金属氧化物(TMO)因其不同寻常的特性和高温稳定性而备受关注。然而,由于三维空间的各向同性键和表面能的限制,直接合成高晶体质量的二维过渡金属氧化物具有挑战性。在此,我们开发了一种金属晶格heredity(MLH)策略,用于在二氧化硅/硅基底上合成具有可调特性的超薄 TMO 单晶体(如 Fe2O3)。MLH 从化学气相沉积生长的二维过渡金属二卤化物(TMDs)开始,然后通过独特的硫-氧顺序取代反应获得 TMOs,其中金属原子保留了原有的晶格排列和对称性。这种工艺可生长出与 TMD 模板的形态和厚度相吻合的单晶 TMO,原位光学研究和原子分辨成像也证明了这一点。该方法可用于生长多种二维 TMO,包括 Fe2O3、V2O5、Cr2O3、Co3O4 和 NiO,其带隙范围从近红外到近紫外。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Matter
Matter MATERIALS SCIENCE, MULTIDISCIPLINARY-
CiteScore
26.30
自引率
2.60%
发文量
367
期刊介绍: Matter, a monthly journal affiliated with Cell, spans the broad field of materials science from nano to macro levels,covering fundamentals to applications. Embracing groundbreaking technologies,it includes full-length research articles,reviews, perspectives,previews, opinions, personnel stories, and general editorial content. Matter aims to be the primary resource for researchers in academia and industry, inspiring the next generation of materials scientists.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信