IRE1α silences dsRNA to prevent taxane-induced pyroptosis in triple-negative breast cancer

IF 45.5 1区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY
Cell Pub Date : 2024-10-16 DOI:10.1016/j.cell.2024.09.032
Longyong Xu, Fanglue Peng, Qin Luo, Yao Ding, Fei Yuan, Liting Zheng, Wei He, Sophie S. Zhang, Xin Fu, Jin Liu, Ayse Sena Mutlu, Shuyue Wang, Ralf Bernd Nehring, Xingyu Li, Qianzi Tang, Catherine Li, Xiangdong Lv, Lacey E. Dobrolecki, Weijie Zhang, Dong Han, Xi Chen
{"title":"IRE1α silences dsRNA to prevent taxane-induced pyroptosis in triple-negative breast cancer","authors":"Longyong Xu, Fanglue Peng, Qin Luo, Yao Ding, Fei Yuan, Liting Zheng, Wei He, Sophie S. Zhang, Xin Fu, Jin Liu, Ayse Sena Mutlu, Shuyue Wang, Ralf Bernd Nehring, Xingyu Li, Qianzi Tang, Catherine Li, Xiangdong Lv, Lacey E. Dobrolecki, Weijie Zhang, Dong Han, Xi Chen","doi":"10.1016/j.cell.2024.09.032","DOIUrl":null,"url":null,"abstract":"Chemotherapy is often combined with immune checkpoint inhibitor (ICIs) to enhance immunotherapy responses. Despite the approval of chemo-immunotherapy in multiple human cancers, many immunologically cold tumors remain unresponsive. The mechanisms determining the immunogenicity of chemotherapy are elusive. Here, we identify the ER stress sensor IRE1α as a critical checkpoint that restricts the immunostimulatory effects of taxane chemotherapy and prevents the innate immune recognition of immunologically cold triple-negative breast cancer (TNBC). IRE1α RNase silences taxane-induced double-stranded RNA (dsRNA) through regulated IRE1-dependent decay (RIDD) to prevent NLRP3 inflammasome-dependent pyroptosis. Inhibition of IRE1α in <em>Trp53</em><sup><em>−/</em><em>−</em></sup> TNBC allows taxane to induce extensive dsRNAs that are sensed by ZBP1, which in turn activates NLRP3-GSDMD-mediated pyroptosis. Consequently, IRE1α RNase inhibitor plus taxane converts PD-L1-negative, ICI-unresponsive TNBC tumors into PD-L1<sup>high</sup> immunogenic tumors that are hyper-sensitive to ICI. We reveal IRE1α as a cancer cell defense mechanism that prevents taxane-induced danger signal accumulation and pyroptotic cell death.","PeriodicalId":9656,"journal":{"name":"Cell","volume":"1 1","pages":""},"PeriodicalIF":45.5000,"publicationDate":"2024-10-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cell","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/j.cell.2024.09.032","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Chemotherapy is often combined with immune checkpoint inhibitor (ICIs) to enhance immunotherapy responses. Despite the approval of chemo-immunotherapy in multiple human cancers, many immunologically cold tumors remain unresponsive. The mechanisms determining the immunogenicity of chemotherapy are elusive. Here, we identify the ER stress sensor IRE1α as a critical checkpoint that restricts the immunostimulatory effects of taxane chemotherapy and prevents the innate immune recognition of immunologically cold triple-negative breast cancer (TNBC). IRE1α RNase silences taxane-induced double-stranded RNA (dsRNA) through regulated IRE1-dependent decay (RIDD) to prevent NLRP3 inflammasome-dependent pyroptosis. Inhibition of IRE1α in Trp53−/ TNBC allows taxane to induce extensive dsRNAs that are sensed by ZBP1, which in turn activates NLRP3-GSDMD-mediated pyroptosis. Consequently, IRE1α RNase inhibitor plus taxane converts PD-L1-negative, ICI-unresponsive TNBC tumors into PD-L1high immunogenic tumors that are hyper-sensitive to ICI. We reveal IRE1α as a cancer cell defense mechanism that prevents taxane-induced danger signal accumulation and pyroptotic cell death.

Abstract Image

IRE1α 沉默dsRNA,防止三阴性乳腺癌发生由紫杉烷诱导的热休克
化疗通常与免疫检查点抑制剂(ICIs)相结合,以增强免疫治疗反应。尽管化疗免疫疗法已被批准用于多种人类癌症,但许多免疫学上冷门的肿瘤仍然没有反应。决定化疗免疫原性的机制尚不明确。在这里,我们发现ER应激传感器IRE1α是一个关键的检查点,它限制了类固醇化疗的免疫刺激作用,并阻止了免疫冷性三阴性乳腺癌(TNBC)的先天免疫识别。IRE1α RNase通过调控IRE1依赖性衰变(RIDD)沉默了紫杉类药物诱导的双链RNA(dsRNA),以防止NLRP3炎症体依赖性的脓毒症。在Trp53-/-TNBC中抑制IRE1α可使紫杉醇诱导大量dsRNA,这些dsRNA被ZBP1感知,进而激活NLRP3-GSDMD介导的裂解。因此,IRE1α RNase 抑制剂加紫杉烷可将 PD-L1 阴性、对 ICI 无反应的 TNBC 肿瘤转化为对 ICI 超敏感的 PD-L1 高免疫原性肿瘤。我们揭示了 IRE1α 是一种癌细胞防御机制,它能防止紫杉烷诱导的危险信号积累和细胞自燃死亡。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Cell
Cell 生物-生化与分子生物学
CiteScore
110.00
自引率
0.80%
发文量
396
审稿时长
2 months
期刊介绍: Cells is an international, peer-reviewed, open access journal that focuses on cell biology, molecular biology, and biophysics. It is affiliated with several societies, including the Spanish Society for Biochemistry and Molecular Biology (SEBBM), Nordic Autophagy Society (NAS), Spanish Society of Hematology and Hemotherapy (SEHH), and Society for Regenerative Medicine (Russian Federation) (RPO). The journal publishes research findings of significant importance in various areas of experimental biology, such as cell biology, molecular biology, neuroscience, immunology, virology, microbiology, cancer, human genetics, systems biology, signaling, and disease mechanisms and therapeutics. The primary criterion for considering papers is whether the results contribute to significant conceptual advances or raise thought-provoking questions and hypotheses related to interesting and important biological inquiries. In addition to primary research articles presented in four formats, Cells also features review and opinion articles in its "leading edge" section, discussing recent research advancements and topics of interest to its wide readership.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信