Optimizing synergistic effects: creating oxygen vacancies in NiCoWO4via a solid-state grinding method for improved energy storage performance†

IF 3.5 3区 化学 Q2 CHEMISTRY, INORGANIC & NUCLEAR
Anandhavalli Jeevarathinam, Arun Annamalai, Ramya Ravichandran, Kumaresan Annamalai and Sundaravadivel Elumalai
{"title":"Optimizing synergistic effects: creating oxygen vacancies in NiCoWO4via a solid-state grinding method for improved energy storage performance†","authors":"Anandhavalli Jeevarathinam, Arun Annamalai, Ramya Ravichandran, Kumaresan Annamalai and Sundaravadivel Elumalai","doi":"10.1039/D4DT02118E","DOIUrl":null,"url":null,"abstract":"<p >To address the escalating demand for electrical energy, developing high-performance electrochemical energy storage materials is crucial. Metal oxides represent promising materials for high-energy-density supercapacitors. Among these materials, transition metal-based tungstates exhibit significantly enhanced electrical conductivity compared to pure oxides. However, their low inherent conductivity, restricted electrochemically active sites, significant volume expansion, lower capacity, and deprived cycling stability undermine their electrochemical properties. Herein, we synthesised an oxygen vacancy-enriched NiCoWO<small><sub>4</sub></small> electrode by a simple solid-state, solvent-free grinding process using NaBH<small><sub>4</sub></small>. The Ov-NiCoWO<small><sub>4</sub></small> electrode displays an impressive capacitance of 703.66 F g<small><sup>−1</sup></small> at 1 A g<small><sup>−1</sup></small> and exceptional cycling stability with 87% retention over 2000 cycles at 7 A g<small><sup>−1</sup></small>. This excellent performance is attributed to the oxygen vacancy in the Ov-NiCoWO<small><sub>4</sub></small> material, which increases the electron carrier density, accelerates electron transportation, enhances the active surface area, and boosts the redox reactivity of the material. In the as-prepared real-life supercapacitor configuration of Ov-NiCoWO<small><sub>4</sub></small>//AC, a determined capacitance of 129.10 F g<small><sup>−1</sup></small> at 1 A g<small><sup>−1</sup></small> is achieved. Additionally, it exhibits an energy density of 37.699 W h kg<small><sup>−1</sup></small> with a power density of 724.98 W kg<small><sup>−1</sup></small>, signifying exceptional performance. Furthermore, it maintains an impressive cycle life, retaining approximately 88.5% over 1000 cycles.</p>","PeriodicalId":71,"journal":{"name":"Dalton Transactions","volume":" 44","pages":" 17948-17962"},"PeriodicalIF":3.5000,"publicationDate":"2024-10-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Dalton Transactions","FirstCategoryId":"92","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2024/dt/d4dt02118e","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, INORGANIC & NUCLEAR","Score":null,"Total":0}
引用次数: 0

Abstract

To address the escalating demand for electrical energy, developing high-performance electrochemical energy storage materials is crucial. Metal oxides represent promising materials for high-energy-density supercapacitors. Among these materials, transition metal-based tungstates exhibit significantly enhanced electrical conductivity compared to pure oxides. However, their low inherent conductivity, restricted electrochemically active sites, significant volume expansion, lower capacity, and deprived cycling stability undermine their electrochemical properties. Herein, we synthesised an oxygen vacancy-enriched NiCoWO4 electrode by a simple solid-state, solvent-free grinding process using NaBH4. The Ov-NiCoWO4 electrode displays an impressive capacitance of 703.66 F g−1 at 1 A g−1 and exceptional cycling stability with 87% retention over 2000 cycles at 7 A g−1. This excellent performance is attributed to the oxygen vacancy in the Ov-NiCoWO4 material, which increases the electron carrier density, accelerates electron transportation, enhances the active surface area, and boosts the redox reactivity of the material. In the as-prepared real-life supercapacitor configuration of Ov-NiCoWO4//AC, a determined capacitance of 129.10 F g−1 at 1 A g−1 is achieved. Additionally, it exhibits an energy density of 37.699 W h kg−1 with a power density of 724.98 W kg−1, signifying exceptional performance. Furthermore, it maintains an impressive cycle life, retaining approximately 88.5% over 1000 cycles.

Abstract Image

优化协同效应:通过固态研磨法在镍钴氧化物(NiCoWO4)中制造氧空位,提高储能性能。
为满足日益增长的电能需求,开发高性能的电化学储能材料至关重要。金属氧化物是一种很有前途的高能量密度超级电容器材料。在这些材料中,与纯氧化物相比,过渡金属基钨酸盐的导电性明显增强。然而,其固有的低电导率、有限的电化学活性位点、显著的体积膨胀、较低的容量和循环稳定性削弱了其电化学特性。在此,我们采用一种简单的固态无溶剂研磨工艺,利用 NaBH4 制得了富含氧空位的 NiCoWO4 电极。Ov-NiCoWO4 电极在 1 Ag-1 的条件下显示出令人印象深刻的 703.66 Fg-1 电容,在 7 A/g 的条件下经过 2000 次循环后仍能保持 87% 的优异循环稳定性。这种优异的性能归功于 Ov-NiCoWO4 材料中的氧空位,它增加了电子载流子密度,加速了电子传输,提高了活性表面积,并增强了材料的氧化还原反应活性。在 Ov-NiCoWO4//AC 制成的实际超级电容器配置中,在 1 A/g 的条件下,电容值达到了 129.10 F/g。此外,它的能量密度为 37.699 Wh/kg,功率密度为 724.98 W/kg,性能卓越。此外,它的循环寿命也令人印象深刻,1000 次循环后仍能保持约 88.5%的寿命。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Dalton Transactions
Dalton Transactions 化学-无机化学与核化学
CiteScore
6.60
自引率
7.50%
发文量
1832
审稿时长
1.5 months
期刊介绍: Dalton Transactions is a journal for all areas of inorganic chemistry, which encompasses the organometallic, bioinorganic and materials chemistry of the elements, with applications including synthesis, catalysis, energy conversion/storage, electrical devices and medicine. Dalton Transactions welcomes high-quality, original submissions in all of these areas and more, where the advancement of knowledge in inorganic chemistry is significant.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信