Kaiyuan Yang, Chengbo Liu, Kun Hong, Xizhong Chen, Zheng-Hong Luo
{"title":"An elastoplastic beam bond model for DEM simulation of deformable materials and breakage behaviors","authors":"Kaiyuan Yang, Chengbo Liu, Kun Hong, Xizhong Chen, Zheng-Hong Luo","doi":"10.1002/aic.18624","DOIUrl":null,"url":null,"abstract":"In modern chemical engineering production, numerous elastoplastic materials, often formed into agglomerates, frequently undergo plastic deformation and rupture. Understanding how these materials behave under different conditions is crucial for improving manufacturing processes and material design. In this work, an elastoplastic beam bond model for discrete element method (DEM) simulation was developed, in which a yield criterion is introduced into Timoshenko beam bond method. The model can simulate not just the initial elastic (stretchy) behavior of the materials but also their plastic (permanent) deformation behaviors. The model was applied to central collision of two agglomerates, agglomerate uniaxial compression, and agglomerate-wall impact cases. It is shown that the updated model could predict the behavior of materials that undergo permanent changes under stress, compared to previous models that only considered elastic behaviors. This could enable more accurate simulations of particulate materials and aid in better process design.","PeriodicalId":120,"journal":{"name":"AIChE Journal","volume":"3 1","pages":""},"PeriodicalIF":3.5000,"publicationDate":"2024-10-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"AIChE Journal","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1002/aic.18624","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0
Abstract
In modern chemical engineering production, numerous elastoplastic materials, often formed into agglomerates, frequently undergo plastic deformation and rupture. Understanding how these materials behave under different conditions is crucial for improving manufacturing processes and material design. In this work, an elastoplastic beam bond model for discrete element method (DEM) simulation was developed, in which a yield criterion is introduced into Timoshenko beam bond method. The model can simulate not just the initial elastic (stretchy) behavior of the materials but also their plastic (permanent) deformation behaviors. The model was applied to central collision of two agglomerates, agglomerate uniaxial compression, and agglomerate-wall impact cases. It is shown that the updated model could predict the behavior of materials that undergo permanent changes under stress, compared to previous models that only considered elastic behaviors. This could enable more accurate simulations of particulate materials and aid in better process design.
期刊介绍:
The AIChE Journal is the premier research monthly in chemical engineering and related fields. This peer-reviewed and broad-based journal reports on the most important and latest technological advances in core areas of chemical engineering as well as in other relevant engineering disciplines. To keep abreast with the progressive outlook of the profession, the Journal has been expanding the scope of its editorial contents to include such fast developing areas as biotechnology, electrochemical engineering, and environmental engineering.
The AIChE Journal is indeed the global communications vehicle for the world-renowned researchers to exchange top-notch research findings with one another. Subscribing to the AIChE Journal is like having immediate access to nine topical journals in the field.
Articles are categorized according to the following topical areas:
Biomolecular Engineering, Bioengineering, Biochemicals, Biofuels, and Food
Inorganic Materials: Synthesis and Processing
Particle Technology and Fluidization
Process Systems Engineering
Reaction Engineering, Kinetics and Catalysis
Separations: Materials, Devices and Processes
Soft Materials: Synthesis, Processing and Products
Thermodynamics and Molecular-Scale Phenomena
Transport Phenomena and Fluid Mechanics.