Animal life in the shallow subseafloor crust at deep-sea hydrothermal vents

IF 14.7 1区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES
Monika Bright, Sabine Gollner, André Luiz de Oliveira, Salvador Espada-Hinojosa, Avery Fulford, Ian Vincent Hughes, Stephane Hourdez, Clarissa Karthäuser, Ingrid Kolar, Nicole Krause, Victor Le Layec, Tihomir Makovec, Alessandro Messora, Jessica Mitchell, Philipp Pröts, Ivonne Rodríguez-Ramírez, Fanny Sieler, Stefan M. Sievert, Jan Steger, Tinkara Tinta, Teresa Rosa Maria Winter, Zach Bright, Russel Coffield, Carl Hill, Kris Ingram, Alex Paris
{"title":"Animal life in the shallow subseafloor crust at deep-sea hydrothermal vents","authors":"Monika Bright, Sabine Gollner, André Luiz de Oliveira, Salvador Espada-Hinojosa, Avery Fulford, Ian Vincent Hughes, Stephane Hourdez, Clarissa Karthäuser, Ingrid Kolar, Nicole Krause, Victor Le Layec, Tihomir Makovec, Alessandro Messora, Jessica Mitchell, Philipp Pröts, Ivonne Rodríguez-Ramírez, Fanny Sieler, Stefan M. Sievert, Jan Steger, Tinkara Tinta, Teresa Rosa Maria Winter, Zach Bright, Russel Coffield, Carl Hill, Kris Ingram, Alex Paris","doi":"10.1038/s41467-024-52631-9","DOIUrl":null,"url":null,"abstract":"<p>It was once believed that only microbes and viruses inhabited the subseafloor crust beneath hydrothermal vents. Yet, on the seafloor, animals like the giant tubeworm <i>Riftia pachyptila</i> thrive. Their larvae are thought to disperse in the water column, despite never being observed there. We hypothesized that these larvae travel through the subseafloor via vent fluids. In our exploration, lifting lobate lava shelves revealed adult tubeworms and other vent animals in subseafloor cavities. The discovery of vent endemic animals below the visible seafloor shows that the seafloor and subseafloor faunal communities are connected. The presence of adult tubeworms suggests larval dispersal through the recharge zone of the hydrothermal circulation system. Given that many of these animals are host to dense bacterial communities that oxidize reduced chemicals and fix carbon, the extension of animal habitats into the subseafloor has implications for local and regional geochemical flux measurements. These findings underscore the need for protecting vents, as the extent of these habitats has yet to be fully ascertained.</p>","PeriodicalId":19066,"journal":{"name":"Nature Communications","volume":null,"pages":null},"PeriodicalIF":14.7000,"publicationDate":"2024-10-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Communications","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41467-024-52631-9","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

It was once believed that only microbes and viruses inhabited the subseafloor crust beneath hydrothermal vents. Yet, on the seafloor, animals like the giant tubeworm Riftia pachyptila thrive. Their larvae are thought to disperse in the water column, despite never being observed there. We hypothesized that these larvae travel through the subseafloor via vent fluids. In our exploration, lifting lobate lava shelves revealed adult tubeworms and other vent animals in subseafloor cavities. The discovery of vent endemic animals below the visible seafloor shows that the seafloor and subseafloor faunal communities are connected. The presence of adult tubeworms suggests larval dispersal through the recharge zone of the hydrothermal circulation system. Given that many of these animals are host to dense bacterial communities that oxidize reduced chemicals and fix carbon, the extension of animal habitats into the subseafloor has implications for local and regional geochemical flux measurements. These findings underscore the need for protecting vents, as the extent of these habitats has yet to be fully ascertained.

Abstract Image

深海热液喷口浅海底壳中的动物生命
人们曾经认为,热液喷口下方的海底地壳中只栖息着微生物和病毒。然而,在海底,像巨型管虫 Riftia pachyptila 这样的动物却在繁衍生息。人们认为它们的幼虫散布在水体中,尽管从未在那里观察到过。我们假设这些幼虫通过喷口流体穿过海底下层。在我们的勘探过程中,掀开分叶状熔岩架发现了海底下空腔中的成年管圆线虫和其他喷口动物。在可见海底下发现喷口特有动物表明,海底和海底下动物群落是相互联系的。成年管虫的出现表明幼虫是通过热液循环系统的补给区传播的。鉴于这些动物中有许多寄生于氧化还原化学物质和固定碳的密集细菌群落,动物栖息地延伸到海底下对当地和区域地球化学通量测量具有影响。这些发现强调了保护喷口的必要性,因为这些栖息地的范围尚未完全确定。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Nature Communications
Nature Communications Biological Science Disciplines-
CiteScore
24.90
自引率
2.40%
发文量
6928
审稿时长
3.7 months
期刊介绍: Nature Communications, an open-access journal, publishes high-quality research spanning all areas of the natural sciences. Papers featured in the journal showcase significant advances relevant to specialists in each respective field. With a 2-year impact factor of 16.6 (2022) and a median time of 8 days from submission to the first editorial decision, Nature Communications is committed to rapid dissemination of research findings. As a multidisciplinary journal, it welcomes contributions from biological, health, physical, chemical, Earth, social, mathematical, applied, and engineering sciences, aiming to highlight important breakthroughs within each domain.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信