An emerging multi-omic understanding of the genetics of opioid addiction.

Eric O Johnson,Heidi S Fisher,Kyle A Sullivan,Olivia Corradin,Sandra Sanchez-Roige,Nathan C Gaddis,Yasmine N Sami,Alice Townsend,Erica Teixeira Prates,Mirko Pavicic,Peter Kruse,Elissa J Chesler,Abraham A Palmer,Vanessa Troiani,Jason A Bubier,Daniel A Jacobson,Brion S Maher
{"title":"An emerging multi-omic understanding of the genetics of opioid addiction.","authors":"Eric O Johnson,Heidi S Fisher,Kyle A Sullivan,Olivia Corradin,Sandra Sanchez-Roige,Nathan C Gaddis,Yasmine N Sami,Alice Townsend,Erica Teixeira Prates,Mirko Pavicic,Peter Kruse,Elissa J Chesler,Abraham A Palmer,Vanessa Troiani,Jason A Bubier,Daniel A Jacobson,Brion S Maher","doi":"10.1172/jci172886","DOIUrl":null,"url":null,"abstract":"Opioid misuse, addiction, and associated overdose deaths remain global public health crises. Despite the tremendous need for pharmacological treatments, current options are limited in number, use, and effectiveness. Fundamental leaps forward in our understanding of the biology driving opioid addiction are needed to guide development of more effective medication-assisted therapies. This Review focuses on the omics-identified biological features associated with opioid addiction. Recent GWAS have begun to identify robust genetic associations, including variants in OPRM1, FURIN, and the gene cluster SCAI/PPP6C/RABEPK. An increasing number of omics studies of postmortem human brain tissue examining biological features (e.g., histone modification and gene expression) across different brain regions have identified broad gene dysregulation associated with overdose death among opioid misusers. Drawn together by meta-analysis and multi-omic systems biology, and informed by model organism studies, key biological pathways enriched for opioid addiction-associated genes are emerging, which include specific receptors (e.g., GABAB receptors, GPCR, and Trk) linked to signaling pathways (e.g., Trk, ERK/MAPK, orexin) that are associated with synaptic plasticity and neuronal signaling. Studies leveraging the agnostic discovery power of omics and placing it within the context of functional neurobiology will propel us toward much-needed, field-changing breakthroughs, including identification of actionable targets for drug development to treat this devastating brain disease.","PeriodicalId":520097,"journal":{"name":"The Journal of Clinical Investigation","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-10-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Journal of Clinical Investigation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1172/jci172886","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Opioid misuse, addiction, and associated overdose deaths remain global public health crises. Despite the tremendous need for pharmacological treatments, current options are limited in number, use, and effectiveness. Fundamental leaps forward in our understanding of the biology driving opioid addiction are needed to guide development of more effective medication-assisted therapies. This Review focuses on the omics-identified biological features associated with opioid addiction. Recent GWAS have begun to identify robust genetic associations, including variants in OPRM1, FURIN, and the gene cluster SCAI/PPP6C/RABEPK. An increasing number of omics studies of postmortem human brain tissue examining biological features (e.g., histone modification and gene expression) across different brain regions have identified broad gene dysregulation associated with overdose death among opioid misusers. Drawn together by meta-analysis and multi-omic systems biology, and informed by model organism studies, key biological pathways enriched for opioid addiction-associated genes are emerging, which include specific receptors (e.g., GABAB receptors, GPCR, and Trk) linked to signaling pathways (e.g., Trk, ERK/MAPK, orexin) that are associated with synaptic plasticity and neuronal signaling. Studies leveraging the agnostic discovery power of omics and placing it within the context of functional neurobiology will propel us toward much-needed, field-changing breakthroughs, including identification of actionable targets for drug development to treat this devastating brain disease.
对阿片类药物成瘾遗传学的多原子新认识。
阿片类药物滥用、成瘾以及与之相关的用药过量死亡仍是全球性的公共卫生危机。尽管对药物治疗的需求巨大,但目前的选择在数量、使用和有效性方面都很有限。我们对阿片类药物成瘾生物学的认识需要有根本性的飞跃,以指导开发更有效的药物辅助疗法。本综述将重点关注与阿片类药物成瘾相关的分子生物学特征。最近的全球基因组研究已开始发现强有力的遗传关联,包括 OPRM1、FURIN 和 SCAI/PPP6C/RABEPK 基因簇中的变异。越来越多对死后人类脑组织的 omics 研究检查了不同脑区的生物特征(如组蛋白修饰和基因表达),发现了与阿片类药物滥用者过量死亡相关的广泛基因失调。通过荟萃分析和多组学系统生物学,并借鉴模式生物研究,阿片类药物成瘾相关基因富集的关键生物通路正在形成,其中包括与突触可塑性和神经元信号传导相关的信号传导通路(如Trk、ERK/MAPK、orexin)相联系的特定受体(如GABAB受体、GPCR和Trk)。利用 omics 不可知论的发现能力,并将其置于功能神经生物学的背景下进行研究,将推动我们取得急需的、改变领域的突破,包括确定用于药物开发的可行靶点,以治疗这种毁灭性的脑部疾病。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信