Jiongchang Zhao, Mingshuang Shen, Jianjun Zhang, Yang Yu
{"title":"Characteristics of deep soil layer water deficit under different artificial vegetation types of the Loess Plateau, China","authors":"Jiongchang Zhao, Mingshuang Shen, Jianjun Zhang, Yang Yu","doi":"10.1002/hyp.15274","DOIUrl":null,"url":null,"abstract":"<p>Soil water is a crucial factor for the growth of vegetation and sustainable development in water-limited areas. After large-scale vegetation restoration on the Chinese Loess Plateau, understanding the relationship between vegetation and deep soil moisture has become a crucial focus in current research. In this study, artificial forest (<i>Pinus tabulaeformis</i> [PT], <i>Robinia pseudoacacia</i> [RP] and <i>Platycladus orientalis</i> [PO]), apple orchard (AO), secondary forest (SF) and farmland (FL) were selected as the research objects, and grassland (GL) as the control, using soil-drilling techniques. We systematically monitored the soil water content of 0–10 m soil layer over two hydrological years, and explored the effects of different vegetation types on soil water deficiency. The results showed that: (1) The deep soil water various significantly among different vegetation types. Compared with GL, the soil water content in all forest land was generally lower, and this difference became more pronounced in deeper soil layer (>7 m), which indicating the depth of the influence of vegetation on soil water has reached 10 m. (2) The mean soil water deficit size (SWDS) values of PT (0.14), RP (0.17), PO (0.07), AO (0.15), SF (0.10) and FL (0.27) in 0–1 m were all positive, indicating that surface soil water had accumulated during more than half of the sampling periods. In the 2–10 m soil layer, mean SWDS was negative in all vegetation types except in FL, leading to soil desiccation. SWDS was found to fluctuate with soil depth. (3) SWDS was affected by a combination of soil properties and vegetation growth. Our results indicate that the current afforestation model could lead to the deficiency of deep soil water. Therefore, it is imperative to make reasonable vegetation structure according to the available local soil and water resources in future vegetation allocation and management.</p>","PeriodicalId":13189,"journal":{"name":"Hydrological Processes","volume":"38 10","pages":""},"PeriodicalIF":3.2000,"publicationDate":"2024-10-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Hydrological Processes","FirstCategoryId":"89","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/hyp.15274","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Environmental Science","Score":null,"Total":0}
引用次数: 0
Abstract
Soil water is a crucial factor for the growth of vegetation and sustainable development in water-limited areas. After large-scale vegetation restoration on the Chinese Loess Plateau, understanding the relationship between vegetation and deep soil moisture has become a crucial focus in current research. In this study, artificial forest (Pinus tabulaeformis [PT], Robinia pseudoacacia [RP] and Platycladus orientalis [PO]), apple orchard (AO), secondary forest (SF) and farmland (FL) were selected as the research objects, and grassland (GL) as the control, using soil-drilling techniques. We systematically monitored the soil water content of 0–10 m soil layer over two hydrological years, and explored the effects of different vegetation types on soil water deficiency. The results showed that: (1) The deep soil water various significantly among different vegetation types. Compared with GL, the soil water content in all forest land was generally lower, and this difference became more pronounced in deeper soil layer (>7 m), which indicating the depth of the influence of vegetation on soil water has reached 10 m. (2) The mean soil water deficit size (SWDS) values of PT (0.14), RP (0.17), PO (0.07), AO (0.15), SF (0.10) and FL (0.27) in 0–1 m were all positive, indicating that surface soil water had accumulated during more than half of the sampling periods. In the 2–10 m soil layer, mean SWDS was negative in all vegetation types except in FL, leading to soil desiccation. SWDS was found to fluctuate with soil depth. (3) SWDS was affected by a combination of soil properties and vegetation growth. Our results indicate that the current afforestation model could lead to the deficiency of deep soil water. Therefore, it is imperative to make reasonable vegetation structure according to the available local soil and water resources in future vegetation allocation and management.
期刊介绍:
Hydrological Processes is an international journal that publishes original scientific papers advancing understanding of the mechanisms underlying the movement and storage of water in the environment, and the interaction of water with geological, biogeochemical, atmospheric and ecological systems. Not all papers related to water resources are appropriate for submission to this journal; rather we seek papers that clearly articulate the role(s) of hydrological processes.