A Rapid Adaptation Approach for Dynamic Air-Writing Recognition Using Wearable Wristbands with Self-Supervised Contrastive Learning

IF 26.6 1区 材料科学 Q1 Engineering
Yunjian Guo, Kunpeng Li, Wei Yue, Nam-Young Kim, Yang Li, Guozhen Shen, Jong-Chul Lee
{"title":"A Rapid Adaptation Approach for Dynamic Air-Writing Recognition Using Wearable Wristbands with Self-Supervised Contrastive Learning","authors":"Yunjian Guo,&nbsp;Kunpeng Li,&nbsp;Wei Yue,&nbsp;Nam-Young Kim,&nbsp;Yang Li,&nbsp;Guozhen Shen,&nbsp;Jong-Chul Lee","doi":"10.1007/s40820-024-01545-8","DOIUrl":null,"url":null,"abstract":"<div><h2>Highlights</h2><div>\n \n \n<ul>\n <li>\n <p>Utilizing self-supervised learning, the proposed wearable wristband with a four-channel sensing array and wireless transmission module is developed for tracking air-writing and dynamic gestures.</p>\n </li>\n <li>\n <p>The model can learn prior features from unlabeled signals of random wrist movements, significantly reducing the dependency on extensive labeled data for training.</p>\n </li>\n <li>\n <p>The wristband system rapidly adapts to multiple scenarios after fine-tuning using few-shot data, enhancing user interaction through natural and intuitive communication.</p>\n </li>\n </ul>\n </div></div>","PeriodicalId":714,"journal":{"name":"Nano-Micro Letters","volume":"17 1","pages":""},"PeriodicalIF":26.6000,"publicationDate":"2024-10-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s40820-024-01545-8.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nano-Micro Letters","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s40820-024-01545-8","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 0

Abstract

Highlights

  • Utilizing self-supervised learning, the proposed wearable wristband with a four-channel sensing array and wireless transmission module is developed for tracking air-writing and dynamic gestures.

  • The model can learn prior features from unlabeled signals of random wrist movements, significantly reducing the dependency on extensive labeled data for training.

  • The wristband system rapidly adapts to multiple scenarios after fine-tuning using few-shot data, enhancing user interaction through natural and intuitive communication.

Abstract Image

利用可穿戴腕带和自监督对比学习实现动态气写识别的快速适应方法
亮点 利用自监督学习,开发出了带有四通道传感阵列和无线传输模块的可穿戴腕带,用于跟踪空中书写和动态手势。 该模型可从随机腕部运动的无标记信号中学习先验特征,大大降低了对大量标记数据训练的依赖。 腕带系统在使用少量数据进行微调后可快速适应多种场景,通过自然直观的交流增强用户互动。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Nano-Micro Letters
Nano-Micro Letters NANOSCIENCE & NANOTECHNOLOGY-MATERIALS SCIENCE, MULTIDISCIPLINARY
CiteScore
32.60
自引率
4.90%
发文量
981
审稿时长
1.1 months
期刊介绍: Nano-Micro Letters is a peer-reviewed, international, interdisciplinary, and open-access journal published under the SpringerOpen brand. Nano-Micro Letters focuses on the science, experiments, engineering, technologies, and applications of nano- or microscale structures and systems in various fields such as physics, chemistry, biology, material science, and pharmacy.It also explores the expanding interfaces between these fields. Nano-Micro Letters particularly emphasizes the bottom-up approach in the length scale from nano to micro. This approach is crucial for achieving industrial applications in nanotechnology, as it involves the assembly, modification, and control of nanostructures on a microscale.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信