{"title":"Application of aluminosilicate residue-based zeolite from lithium extraction in water treatment","authors":"Fatima Ibsaine , Justine Dionne , Lan Huong Tran , Lucie Coudert , Louis-César Pasquier , Jean-François Blais","doi":"10.1016/j.micromeso.2024.113370","DOIUrl":null,"url":null,"abstract":"<div><div>In a previous study, the Na-P1 type zeolites were synthesized from aluminosilicate residues using an efficient and cost-effective process, exhibiting an excellent adsorption capacity for Ca<sup>2+</sup> in comparison to commercial zeolites 13X and A. Building upon this, the current study evaluates their performance for the adsorption of various elements, including Ca<sup>2+</sup>, Mg<sup>2+</sup>, and NH<sub>4</sub><sup>+</sup>. The objective was to evaluate the performance of the Na-P1 type zeolites for the adsorption of various elements, including Ca<sup>2+</sup>, Mg<sup>2+</sup>, and rare earth elements, with a particular emphasis on the adsorption kinetics and water hardness removal in comparison to commercial zeolite A. The results demonstrated that the Na-P1 zeolite exhibited a satisfactory sorption capacity for Ca<sup>2+</sup> and NH<sub>4</sub><sup>+</sup> ions (66 mg/g), while displaying a relatively lower effectiveness for the sorption of Mg<sup>2+</sup> ions (5.6 mg/g). The Langmuir model is particularly well suited to the sorption of Ca<sup>2+</sup>, while the Freundlich model is more appropriate for Mg<sup>2+</sup>. Both models demonstrated satisfactory representation of NH₄ ⁺ sorption. Moreover, the pseudo-second-order kinetic model provides an excellent description of the Ca<sup>2</sup>⁺ and Mg<sup>2</sup>⁺ sorption processes, while both models effectively describe the NH₄⁺ adsorption kinetics. Additionally, Na-P1 zeolite was observed to effectively reduce water hardness from 322 to 63 mg CaCO₃/L at temperatures of 10, 20, and 38 °C, and to 18 mg/L at 58 °C. These findings suggest that Na-P1 zeolite has promising potential for applications as a water softening agent. Regarding metals and rare earths, the Na-P1 zeolite demonstrated noteworthy sorption efficiencies for Cd<sup>2+</sup> (138 mg/g), Ce<sup>3+</sup> (209 mg/g), Cr<sup>3+</sup> (56.2 mg/g), and Cu<sup>2+</sup> (60.5 mg/g). However, it demonstrated lower sorption efficiencies for Co<sup>2+</sup>, Mn<sup>2+</sup>, Ni<sup>2+</sup> and Dy<sup>3+</sup> (below 16 mg/g). The findings illustrate that Na-P1 zeolites are effective for the adsorption of diverse elements, offering a promising avenue for the sustainable transformation of industrial waste into valuable materials for environmental applications.</div></div>","PeriodicalId":392,"journal":{"name":"Microporous and Mesoporous Materials","volume":"381 ","pages":"Article 113370"},"PeriodicalIF":4.8000,"publicationDate":"2024-10-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Microporous and Mesoporous Materials","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1387181124003925","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, APPLIED","Score":null,"Total":0}
引用次数: 0
Abstract
In a previous study, the Na-P1 type zeolites were synthesized from aluminosilicate residues using an efficient and cost-effective process, exhibiting an excellent adsorption capacity for Ca2+ in comparison to commercial zeolites 13X and A. Building upon this, the current study evaluates their performance for the adsorption of various elements, including Ca2+, Mg2+, and NH4+. The objective was to evaluate the performance of the Na-P1 type zeolites for the adsorption of various elements, including Ca2+, Mg2+, and rare earth elements, with a particular emphasis on the adsorption kinetics and water hardness removal in comparison to commercial zeolite A. The results demonstrated that the Na-P1 zeolite exhibited a satisfactory sorption capacity for Ca2+ and NH4+ ions (66 mg/g), while displaying a relatively lower effectiveness for the sorption of Mg2+ ions (5.6 mg/g). The Langmuir model is particularly well suited to the sorption of Ca2+, while the Freundlich model is more appropriate for Mg2+. Both models demonstrated satisfactory representation of NH₄ ⁺ sorption. Moreover, the pseudo-second-order kinetic model provides an excellent description of the Ca2⁺ and Mg2⁺ sorption processes, while both models effectively describe the NH₄⁺ adsorption kinetics. Additionally, Na-P1 zeolite was observed to effectively reduce water hardness from 322 to 63 mg CaCO₃/L at temperatures of 10, 20, and 38 °C, and to 18 mg/L at 58 °C. These findings suggest that Na-P1 zeolite has promising potential for applications as a water softening agent. Regarding metals and rare earths, the Na-P1 zeolite demonstrated noteworthy sorption efficiencies for Cd2+ (138 mg/g), Ce3+ (209 mg/g), Cr3+ (56.2 mg/g), and Cu2+ (60.5 mg/g). However, it demonstrated lower sorption efficiencies for Co2+, Mn2+, Ni2+ and Dy3+ (below 16 mg/g). The findings illustrate that Na-P1 zeolites are effective for the adsorption of diverse elements, offering a promising avenue for the sustainable transformation of industrial waste into valuable materials for environmental applications.
期刊介绍:
Microporous and Mesoporous Materials covers novel and significant aspects of porous solids classified as either microporous (pore size up to 2 nm) or mesoporous (pore size 2 to 50 nm). The porosity should have a specific impact on the material properties or application. Typical examples are zeolites and zeolite-like materials, pillared materials, clathrasils and clathrates, carbon molecular sieves, ordered mesoporous materials, organic/inorganic porous hybrid materials, or porous metal oxides. Both natural and synthetic porous materials are within the scope of the journal.
Topics which are particularly of interest include:
All aspects of natural microporous and mesoporous solids
The synthesis of crystalline or amorphous porous materials
The physico-chemical characterization of microporous and mesoporous solids, especially spectroscopic and microscopic
The modification of microporous and mesoporous solids, for example by ion exchange or solid-state reactions
All topics related to diffusion of mobile species in the pores of microporous and mesoporous materials
Adsorption (and other separation techniques) using microporous or mesoporous adsorbents
Catalysis by microporous and mesoporous materials
Host/guest interactions
Theoretical chemistry and modelling of host/guest interactions
All topics related to the application of microporous and mesoporous materials in industrial catalysis, separation technology, environmental protection, electrochemistry, membranes, sensors, optical devices, etc.