Shaojie Yang , Kang Li , Mengdi Peng , Huacheng Wang , Jian Lu , Guolin Cai , Dianhui Wu
{"title":"Glutathione metabolism contributes to citric acid tolerance and antioxidant capacity in Acetobacter tropicalis","authors":"Shaojie Yang , Kang Li , Mengdi Peng , Huacheng Wang , Jian Lu , Guolin Cai , Dianhui Wu","doi":"10.1016/j.fm.2024.104657","DOIUrl":null,"url":null,"abstract":"<div><div><em>Acetobacter</em> is one of the main species producing fruit vinegar and its tolerance mechanism to citric acid has not been fully studied. This limits fruit vinegar production from high-citric-acid fruits, which are excellent materials for fruit vinegar production. This study analyzed the metabolic differences between two strains of <em>A</em>. <em>tropicalis</em> with different citric acid tolerances using non-targeted metabolomics. Differential metabolites and metabolic pathways analysis showed that the enhanced amino acid metabolism significantly improved the citric acid tolerance of <em>A. tropicalis</em> and the deamination of amino acids may also play a role. In addition, the up-regulated phosphatidylcholine (PC) and N-heptanoylhonoserine lactone indicated decreased membrane permeability and enhanced quorum sensing (QS), respectively. The analysis of the interaction between pathways and metabolites indicated that Gln, Cys, and Tyr contribute to improving citric acid tolerance, which was also confirmed by the exogenous addition. After adding the amino acids, the down-regulated <em>qdh</em>, up-regulated <em>ggt</em>, and improved glutathione reductase (GR) activity in J-2736 indicated that glutathione metabolism played an important role in resisting citric acid, and cellular antioxidant capacity was increased. This study provides a theoretical basis for efficient fruit vinegar production from citric-acid-type fruits.</div></div>","PeriodicalId":12399,"journal":{"name":"Food microbiology","volume":"125 ","pages":"Article 104657"},"PeriodicalIF":4.5000,"publicationDate":"2024-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Food microbiology","FirstCategoryId":"97","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0740002024001953","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Acetobacter is one of the main species producing fruit vinegar and its tolerance mechanism to citric acid has not been fully studied. This limits fruit vinegar production from high-citric-acid fruits, which are excellent materials for fruit vinegar production. This study analyzed the metabolic differences between two strains of A. tropicalis with different citric acid tolerances using non-targeted metabolomics. Differential metabolites and metabolic pathways analysis showed that the enhanced amino acid metabolism significantly improved the citric acid tolerance of A. tropicalis and the deamination of amino acids may also play a role. In addition, the up-regulated phosphatidylcholine (PC) and N-heptanoylhonoserine lactone indicated decreased membrane permeability and enhanced quorum sensing (QS), respectively. The analysis of the interaction between pathways and metabolites indicated that Gln, Cys, and Tyr contribute to improving citric acid tolerance, which was also confirmed by the exogenous addition. After adding the amino acids, the down-regulated qdh, up-regulated ggt, and improved glutathione reductase (GR) activity in J-2736 indicated that glutathione metabolism played an important role in resisting citric acid, and cellular antioxidant capacity was increased. This study provides a theoretical basis for efficient fruit vinegar production from citric-acid-type fruits.
期刊介绍:
Food Microbiology publishes original research articles, short communications, review papers, letters, news items and book reviews dealing with all aspects of the microbiology of foods. The editors aim to publish manuscripts of the highest quality which are both relevant and applicable to the broad field covered by the journal. Studies must be novel, have a clear connection to food microbiology, and be of general interest to the international community of food microbiologists. The editors make every effort to ensure rapid and fair reviews, resulting in timely publication of accepted manuscripts.