{"title":"Experimental investigation of high-velocity impact response and compression after impact behavior of continuous carbon fiber thermoplastic composites","authors":"Gang Wei, Chenyu Hao, Hongwei Jin, Yunfei Deng","doi":"10.1016/j.tws.2024.112578","DOIUrl":null,"url":null,"abstract":"<div><div>In order to meet the urgent needs for the application of thermoplastic composite structures in aircraft manufacturing and other fields, the impact resistance and damage tolerance of continuous carbon fiber reinforced thermoplastic composite laminates (CCFRTP) are investigated by high-velocity impact (HVI) and compression after impact (CAI) experiments in this paper. The impact experiment results show that the ballistic response of laminates under small-angle conventional impact is similar, and the impact resistance of laminates under large-angle oblique impact is significantly improved. The failure mechanism of laminates under high-velocity impact is revealed by analyzing the impact process of the projectile, the energy absorption level, the failure morphology and internal damage degree of laminates comprehensively. It is clear that the impact angle and velocity of the projectile will significantly affect the coupling form of the failure mechanism and lead to differentiated results. The results of in-plane compression experiment of laminates with impact damage show that the bearing capacity of laminates is significantly weakened by high velocity impact damage, and the residual strength of laminates is directly determined by the mode and degree of impact damage. In particular, through the analysis of the energy absorption mechanism, a trend prediction model of ballistic limit value with impact angle is established, and the influence of high-velocity impact damage on the residual strength of laminates is revealed. This study provides a better understanding of the mechanical response of thermoplastic composite structures to high-velocity impact loads.</div></div>","PeriodicalId":49435,"journal":{"name":"Thin-Walled Structures","volume":"205 ","pages":"Article 112578"},"PeriodicalIF":5.7000,"publicationDate":"2024-10-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Thin-Walled Structures","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0263823124010188","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, CIVIL","Score":null,"Total":0}
引用次数: 0
Abstract
In order to meet the urgent needs for the application of thermoplastic composite structures in aircraft manufacturing and other fields, the impact resistance and damage tolerance of continuous carbon fiber reinforced thermoplastic composite laminates (CCFRTP) are investigated by high-velocity impact (HVI) and compression after impact (CAI) experiments in this paper. The impact experiment results show that the ballistic response of laminates under small-angle conventional impact is similar, and the impact resistance of laminates under large-angle oblique impact is significantly improved. The failure mechanism of laminates under high-velocity impact is revealed by analyzing the impact process of the projectile, the energy absorption level, the failure morphology and internal damage degree of laminates comprehensively. It is clear that the impact angle and velocity of the projectile will significantly affect the coupling form of the failure mechanism and lead to differentiated results. The results of in-plane compression experiment of laminates with impact damage show that the bearing capacity of laminates is significantly weakened by high velocity impact damage, and the residual strength of laminates is directly determined by the mode and degree of impact damage. In particular, through the analysis of the energy absorption mechanism, a trend prediction model of ballistic limit value with impact angle is established, and the influence of high-velocity impact damage on the residual strength of laminates is revealed. This study provides a better understanding of the mechanical response of thermoplastic composite structures to high-velocity impact loads.
期刊介绍:
Thin-walled structures comprises an important and growing proportion of engineering construction with areas of application becoming increasingly diverse, ranging from aircraft, bridges, ships and oil rigs to storage vessels, industrial buildings and warehouses.
Many factors, including cost and weight economy, new materials and processes and the growth of powerful methods of analysis have contributed to this growth, and led to the need for a journal which concentrates specifically on structures in which problems arise due to the thinness of the walls. This field includes cold– formed sections, plate and shell structures, reinforced plastics structures and aluminium structures, and is of importance in many branches of engineering.
The primary criterion for consideration of papers in Thin–Walled Structures is that they must be concerned with thin–walled structures or the basic problems inherent in thin–walled structures. Provided this criterion is satisfied no restriction is placed on the type of construction, material or field of application. Papers on theory, experiment, design, etc., are published and it is expected that many papers will contain aspects of all three.