Wenqiang Zhao , Hongqian Wei , Qiang Ai , Nan Zheng , Chen Lin , Youtong Zhang
{"title":"Real-time model predictive control of path-following for autonomous vehicles towards model mismatch and uncertainty","authors":"Wenqiang Zhao , Hongqian Wei , Qiang Ai , Nan Zheng , Chen Lin , Youtong Zhang","doi":"10.1016/j.conengprac.2024.106126","DOIUrl":null,"url":null,"abstract":"<div><div>The path following function is a critical component of functional safety for autonomous vehicles, and following precision has garnered increased attention in practical applications. However, control performance can be compromised due to uncertainties in vehicle parameters and discrepancies between the control model and the actual vehicle to be controlled. To address this, a real-time model predictive control for path following of autonomous vehicles is proposed, incorporating an estimation of model mismatch. An adaptive extended Kalman filter is developed to estimate the potential model mismatch terms, and state deviations are compensated accordingly. Subsequently, a parameter-varying model predictive controller is formulated to achieve unbiased path-following control while maintaining robustness to parameter variations. Simulation results demonstrate a significant improvement in lateral following accuracy, with enhancements of 53.85%, 47.83%, and 42.86% compared to the nonlinear model predictive control, robust model predictive control, and learning-based control, respectively. The hardware-in-the-loop and real-road experiments further validate the excellent real-time executability, with a maximum time cost of 12.4 ms, accounting for 62% of the sampling period.</div></div>","PeriodicalId":50615,"journal":{"name":"Control Engineering Practice","volume":null,"pages":null},"PeriodicalIF":5.4000,"publicationDate":"2024-10-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Control Engineering Practice","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0967066124002855","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
引用次数: 0
Abstract
The path following function is a critical component of functional safety for autonomous vehicles, and following precision has garnered increased attention in practical applications. However, control performance can be compromised due to uncertainties in vehicle parameters and discrepancies between the control model and the actual vehicle to be controlled. To address this, a real-time model predictive control for path following of autonomous vehicles is proposed, incorporating an estimation of model mismatch. An adaptive extended Kalman filter is developed to estimate the potential model mismatch terms, and state deviations are compensated accordingly. Subsequently, a parameter-varying model predictive controller is formulated to achieve unbiased path-following control while maintaining robustness to parameter variations. Simulation results demonstrate a significant improvement in lateral following accuracy, with enhancements of 53.85%, 47.83%, and 42.86% compared to the nonlinear model predictive control, robust model predictive control, and learning-based control, respectively. The hardware-in-the-loop and real-road experiments further validate the excellent real-time executability, with a maximum time cost of 12.4 ms, accounting for 62% of the sampling period.
期刊介绍:
Control Engineering Practice strives to meet the needs of industrial practitioners and industrially related academics and researchers. It publishes papers which illustrate the direct application of control theory and its supporting tools in all possible areas of automation. As a result, the journal only contains papers which can be considered to have made significant contributions to the application of advanced control techniques. It is normally expected that practical results should be included, but where simulation only studies are available, it is necessary to demonstrate that the simulation model is representative of a genuine application. Strictly theoretical papers will find a more appropriate home in Control Engineering Practice''s sister publication, Automatica. It is also expected that papers are innovative with respect to the state of the art and are sufficiently detailed for a reader to be able to duplicate the main results of the paper (supplementary material, including datasets, tables, code and any relevant interactive material can be made available and downloaded from the website). The benefits of the presented methods must be made very clear and the new techniques must be compared and contrasted with results obtained using existing methods. Moreover, a thorough analysis of failures that may happen in the design process and implementation can also be part of the paper.
The scope of Control Engineering Practice matches the activities of IFAC.
Papers demonstrating the contribution of automation and control in improving the performance, quality, productivity, sustainability, resource and energy efficiency, and the manageability of systems and processes for the benefit of mankind and are relevant to industrial practitioners are most welcome.