{"title":"Optimal L2 error estimates of mass- and energy- conserved FE schemes for a nonlinear Schrödinger–type system","authors":"Zhuoyue Zhang, Wentao Cai","doi":"10.1016/j.cam.2024.116313","DOIUrl":null,"url":null,"abstract":"<div><div>In this paper, we present an implicit Crank–Nicolson finite element (FE) scheme for solving a nonlinear Schrödinger–type system, which includes Schrödinger–Helmholz system and Schrödinger–Poisson system. In our numerical scheme, we employ an implicit Crank–Nicolson method for time discretization and a conforming FE method for spatial discretization. The proposed method is proved to be well-posedness and ensures mass and energy conservation at the discrete level. Furthermore, we prove optimal <span><math><msup><mrow><mi>L</mi></mrow><mrow><mn>2</mn></mrow></msup></math></span> error estimates for the fully discrete solutions. Finally, some numerical examples are provided to verify the convergence rate and conservation properties.</div></div>","PeriodicalId":50226,"journal":{"name":"Journal of Computational and Applied Mathematics","volume":"457 ","pages":"Article 116313"},"PeriodicalIF":2.1000,"publicationDate":"2024-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Computational and Applied Mathematics","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0377042724005612","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0
Abstract
In this paper, we present an implicit Crank–Nicolson finite element (FE) scheme for solving a nonlinear Schrödinger–type system, which includes Schrödinger–Helmholz system and Schrödinger–Poisson system. In our numerical scheme, we employ an implicit Crank–Nicolson method for time discretization and a conforming FE method for spatial discretization. The proposed method is proved to be well-posedness and ensures mass and energy conservation at the discrete level. Furthermore, we prove optimal error estimates for the fully discrete solutions. Finally, some numerical examples are provided to verify the convergence rate and conservation properties.
期刊介绍:
The Journal of Computational and Applied Mathematics publishes original papers of high scientific value in all areas of computational and applied mathematics. The main interest of the Journal is in papers that describe and analyze new computational techniques for solving scientific or engineering problems. Also the improved analysis, including the effectiveness and applicability, of existing methods and algorithms is of importance. The computational efficiency (e.g. the convergence, stability, accuracy, ...) should be proved and illustrated by nontrivial numerical examples. Papers describing only variants of existing methods, without adding significant new computational properties are not of interest.
The audience consists of: applied mathematicians, numerical analysts, computational scientists and engineers.