{"title":"Novel hybrid TFET-FinFET 12T SRAM cells with enhanced write margin and read performance","authors":"Seyed Arman Sabaghpour, Behzad Ebrahimi, Pooya Torkzadeh","doi":"10.1016/j.vlsi.2024.102294","DOIUrl":null,"url":null,"abstract":"<div><div>This work presents two innovative 12T cells combining tunnel field-effect transistor (TFET) and fin field-effect transistor (FinFET) technologies. These cells address reverse bias current issues by incorporating separate paths for reading data and write enhancement cut transistors, enhancing hold/read/write static noise margin (H/R/WSNM), reducing read time, and minimizing power consumption from TFET leakage. At 0.6 V, the first (second) SRAM cell shows a WSNM improvement over O_7T, 8T, CA_10T, 12T, and HF_10T cells by 152 % (93 %), 152 % (93 %), 157.7 % (97.5 %), 95 % (50 %), and 104 % (57 %), respectively. The leakage power of the first (second) 12T TFET SRAM cell is two (four) orders of magnitude lower than O_7T and 8T SRAM cells. These hybrid SRAM cells also exhibit faster read operations across <em>V</em><sub>DD</sub> voltage levels (0.3 V–1 V) and the first 12T cell demonstrates shorter write access times than 12T and CA_10T SRAM cells. These characteristics make the proposed cells particularly suitable for energy-efficient IoT devices and medical applications, where balancing power, area, performance, and data integrity is critical.</div></div>","PeriodicalId":54973,"journal":{"name":"Integration-The Vlsi Journal","volume":"100 ","pages":"Article 102294"},"PeriodicalIF":2.2000,"publicationDate":"2024-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Integration-The Vlsi Journal","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0167926024001585","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE","Score":null,"Total":0}
引用次数: 0
Abstract
This work presents two innovative 12T cells combining tunnel field-effect transistor (TFET) and fin field-effect transistor (FinFET) technologies. These cells address reverse bias current issues by incorporating separate paths for reading data and write enhancement cut transistors, enhancing hold/read/write static noise margin (H/R/WSNM), reducing read time, and minimizing power consumption from TFET leakage. At 0.6 V, the first (second) SRAM cell shows a WSNM improvement over O_7T, 8T, CA_10T, 12T, and HF_10T cells by 152 % (93 %), 152 % (93 %), 157.7 % (97.5 %), 95 % (50 %), and 104 % (57 %), respectively. The leakage power of the first (second) 12T TFET SRAM cell is two (four) orders of magnitude lower than O_7T and 8T SRAM cells. These hybrid SRAM cells also exhibit faster read operations across VDD voltage levels (0.3 V–1 V) and the first 12T cell demonstrates shorter write access times than 12T and CA_10T SRAM cells. These characteristics make the proposed cells particularly suitable for energy-efficient IoT devices and medical applications, where balancing power, area, performance, and data integrity is critical.
期刊介绍:
Integration''s aim is to cover every aspect of the VLSI area, with an emphasis on cross-fertilization between various fields of science, and the design, verification, test and applications of integrated circuits and systems, as well as closely related topics in process and device technologies. Individual issues will feature peer-reviewed tutorials and articles as well as reviews of recent publications. The intended coverage of the journal can be assessed by examining the following (non-exclusive) list of topics:
Specification methods and languages; Analog/Digital Integrated Circuits and Systems; VLSI architectures; Algorithms, methods and tools for modeling, simulation, synthesis and verification of integrated circuits and systems of any complexity; Embedded systems; High-level synthesis for VLSI systems; Logic synthesis and finite automata; Testing, design-for-test and test generation algorithms; Physical design; Formal verification; Algorithms implemented in VLSI systems; Systems engineering; Heterogeneous systems.