Yongsu Jung , Minjik Kim , Hyunkyoo Cho , Weifei Hu , Ikjin Lee
{"title":"Confidence-based design optimization using multivariate kernel density estimation under insufficient input data","authors":"Yongsu Jung , Minjik Kim , Hyunkyoo Cho , Weifei Hu , Ikjin Lee","doi":"10.1016/j.probengmech.2024.103702","DOIUrl":null,"url":null,"abstract":"<div><div>The uncertainty quantification of the input statistical model in reliability-based design optimization (RBDO) has been widely investigated for accurate reliability analysis, and it could be estimated through its characteristics, cumulative experiences, and available data. However, uncertainty quantification of random variables in existing RBDO studies has exploited parametric distributions quantifying the uncertainty through the Bayes' theorem. In addition, a correlation between random variables is often underestimated due to a lack of knowledge and difficulty to describe the high-dimensional correlation. Hence, it has been a challenge to properly quantify input statistical model and its uncertainty. Therefore, a multivariate kernel density estimation (KDE) is employed to perform data-driven confidence-based design optimization (CBDO) for effective quantification of input model uncertainty. Any assumption on input distribution is not necessary since it is established only with the given input data. Moreover, the input model uncertainty due to insufficient data is quantified using bootstrapping and optimal adaptive bandwidth matrices through the Bayes’ theorem using cross-validation error. Consequently, the proposed CBDO with given input data is capable of finding a conservative optimum of RBDO accounting for both aleatory uncertainty of random variables and epistemic uncertainty induced by a limited number of input data through the multivariate KDE.</div></div>","PeriodicalId":54583,"journal":{"name":"Probabilistic Engineering Mechanics","volume":"78 ","pages":"Article 103702"},"PeriodicalIF":3.0000,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Probabilistic Engineering Mechanics","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0266892024001243","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0
Abstract
The uncertainty quantification of the input statistical model in reliability-based design optimization (RBDO) has been widely investigated for accurate reliability analysis, and it could be estimated through its characteristics, cumulative experiences, and available data. However, uncertainty quantification of random variables in existing RBDO studies has exploited parametric distributions quantifying the uncertainty through the Bayes' theorem. In addition, a correlation between random variables is often underestimated due to a lack of knowledge and difficulty to describe the high-dimensional correlation. Hence, it has been a challenge to properly quantify input statistical model and its uncertainty. Therefore, a multivariate kernel density estimation (KDE) is employed to perform data-driven confidence-based design optimization (CBDO) for effective quantification of input model uncertainty. Any assumption on input distribution is not necessary since it is established only with the given input data. Moreover, the input model uncertainty due to insufficient data is quantified using bootstrapping and optimal adaptive bandwidth matrices through the Bayes’ theorem using cross-validation error. Consequently, the proposed CBDO with given input data is capable of finding a conservative optimum of RBDO accounting for both aleatory uncertainty of random variables and epistemic uncertainty induced by a limited number of input data through the multivariate KDE.
期刊介绍:
This journal provides a forum for scholarly work dealing primarily with probabilistic and statistical approaches to contemporary solid/structural and fluid mechanics problems encountered in diverse technical disciplines such as aerospace, civil, marine, mechanical, and nuclear engineering. The journal aims to maintain a healthy balance between general solution techniques and problem-specific results, encouraging a fruitful exchange of ideas among disparate engineering specialities.