Irene Gómez-Cruz, Nalin Seixas, Jalel Labidi, Eulogio Castro, Armando J.D. Silvestre and André M. da Costa
Lopes*,
{"title":"Delignification of Olive Tree Pruning Using a Ternary Eutectic Solvent for Enhanced Saccharification and Isolation of a Unique Lignin Fraction","authors":"Irene Gómez-Cruz, Nalin Seixas, Jalel Labidi, Eulogio Castro, Armando J.D. Silvestre and André M. da Costa\r\nLopes*, ","doi":"10.1021/acssuschemeng.4c0369310.1021/acssuschemeng.4c03693","DOIUrl":null,"url":null,"abstract":"<p >This work aimed at exploring the potentialities of eutectic solvents (ES) in the fractionation of olive tree pruning (OTP) biomass within a biorefinery framework, targeting efficient separation of cellulose fibers and lignin and simultaneously producing high-quality fractions for further processing and application. In this sense, delignification performances of cholinium chloride:ethylene glycol, ChCl:EG (1:9) and cholinium chloride:<i>p</i>-toluenesulfonic acid:ethylene glycol, ChCl:pTSA:EG (1:1:9) as binary and ternary mixtures, respectively, were first evaluated. ChCl:EG demonstrated low efficacy for biomass delignification, while the highest lignin extraction (62.7%) was achieved with ChCl:pTSA:EG at 80 °C and 4 h. At the same conditions, the cellulose content (62.5%) of the resulting solid fraction increased almost three-fold compared to that of the raw OTP (22.3%), using ChCl:pTSA:EG. This ternary ES enabled the OTP matrix breakdown, which, combined with lignin extraction, enhanced the enzymatic hydrolysis of the cellulose-rich fraction to a maximum saccharification yield of 81.8%. The sample exhibited an impressive aliphatic OH group content of 5.2 mmol·g<sup>–1</sup> lignin, one of the highest values among the state-of-the-art. The resulting phenomenon is explained by the ethylene glycol grafting onto the lignin structure (aliphatic region), as demonstrated by <sup>31</sup>P and HSQC NMR, giving chemical functionality to the isolated lignin fraction. Finally, up to 90% of the initial mass of ChCl:pTSA:EG was recovered through the adsorption of impurities. NMR data validated the high purity and the same molar ratio (1:1:9) of recovered ES, two important outcomes to ensure a sustainable reutilization of this solvent.</p>","PeriodicalId":25,"journal":{"name":"ACS Sustainable Chemistry & Engineering","volume":"12 41","pages":"15012–15023 15012–15023"},"PeriodicalIF":7.3000,"publicationDate":"2024-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Sustainable Chemistry & Engineering","FirstCategoryId":"92","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acssuschemeng.4c03693","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
This work aimed at exploring the potentialities of eutectic solvents (ES) in the fractionation of olive tree pruning (OTP) biomass within a biorefinery framework, targeting efficient separation of cellulose fibers and lignin and simultaneously producing high-quality fractions for further processing and application. In this sense, delignification performances of cholinium chloride:ethylene glycol, ChCl:EG (1:9) and cholinium chloride:p-toluenesulfonic acid:ethylene glycol, ChCl:pTSA:EG (1:1:9) as binary and ternary mixtures, respectively, were first evaluated. ChCl:EG demonstrated low efficacy for biomass delignification, while the highest lignin extraction (62.7%) was achieved with ChCl:pTSA:EG at 80 °C and 4 h. At the same conditions, the cellulose content (62.5%) of the resulting solid fraction increased almost three-fold compared to that of the raw OTP (22.3%), using ChCl:pTSA:EG. This ternary ES enabled the OTP matrix breakdown, which, combined with lignin extraction, enhanced the enzymatic hydrolysis of the cellulose-rich fraction to a maximum saccharification yield of 81.8%. The sample exhibited an impressive aliphatic OH group content of 5.2 mmol·g–1 lignin, one of the highest values among the state-of-the-art. The resulting phenomenon is explained by the ethylene glycol grafting onto the lignin structure (aliphatic region), as demonstrated by 31P and HSQC NMR, giving chemical functionality to the isolated lignin fraction. Finally, up to 90% of the initial mass of ChCl:pTSA:EG was recovered through the adsorption of impurities. NMR data validated the high purity and the same molar ratio (1:1:9) of recovered ES, two important outcomes to ensure a sustainable reutilization of this solvent.
期刊介绍:
ACS Sustainable Chemistry & Engineering is a prestigious weekly peer-reviewed scientific journal published by the American Chemical Society. Dedicated to advancing the principles of green chemistry and green engineering, it covers a wide array of research topics including green chemistry, green engineering, biomass, alternative energy, and life cycle assessment.
The journal welcomes submissions in various formats, including Letters, Articles, Features, and Perspectives (Reviews), that address the challenges of sustainability in the chemical enterprise and contribute to the advancement of sustainable practices. Join us in shaping the future of sustainable chemistry and engineering.