Peng Jin, Masoud Hasany, Mohammad Kohestanian, Mehdi Mehrali
{"title":"Micro/nano additives in 3D printing concrete","authors":"Peng Jin, Masoud Hasany, Mohammad Kohestanian, Mehdi Mehrali","doi":"10.1016/j.cemconcomp.2024.105799","DOIUrl":null,"url":null,"abstract":"<div><div>3D concrete printing has attracted burgeoning interest in the construction industry for its ability to offer cost-effectiveness, architectural design flexibility, efficient use of energy and materials, as well as significant time savings in the construction process. However, conventional cement-geopolymer-based materials cannot be used directly for printing due to their lack of printability. This review explores the utilization of inorganic micro/nanomaterials to modify the rheological and mechanical performance of fresh-state and post-hardening cementitious composites, respectively, offering an in-depth analysis of the mechanisms underpinning their effects. This paper discusses a wide range of inorganic micro/nanomaterials, including carbon-based nanomaterials, silicon-based nanomaterials, metallic oxide nanomaterials, nano-calcium carbonate particles, and other micro/nano-materials. Those materials have been utilized in 3D printing concrete or show considerable potential for future applications in this field. Furthermore, this work provides insights into the multiple applications that arise from the synergistic combination of 3D printing construction techniques with the distinctive properties of different nanomaterials.</div></div>","PeriodicalId":9865,"journal":{"name":"Cement & concrete composites","volume":"155 ","pages":"Article 105799"},"PeriodicalIF":10.8000,"publicationDate":"2024-10-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cement & concrete composites","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S095894652400372X","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CONSTRUCTION & BUILDING TECHNOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
3D concrete printing has attracted burgeoning interest in the construction industry for its ability to offer cost-effectiveness, architectural design flexibility, efficient use of energy and materials, as well as significant time savings in the construction process. However, conventional cement-geopolymer-based materials cannot be used directly for printing due to their lack of printability. This review explores the utilization of inorganic micro/nanomaterials to modify the rheological and mechanical performance of fresh-state and post-hardening cementitious composites, respectively, offering an in-depth analysis of the mechanisms underpinning their effects. This paper discusses a wide range of inorganic micro/nanomaterials, including carbon-based nanomaterials, silicon-based nanomaterials, metallic oxide nanomaterials, nano-calcium carbonate particles, and other micro/nano-materials. Those materials have been utilized in 3D printing concrete or show considerable potential for future applications in this field. Furthermore, this work provides insights into the multiple applications that arise from the synergistic combination of 3D printing construction techniques with the distinctive properties of different nanomaterials.
期刊介绍:
Cement & concrete composites focuses on advancements in cement-concrete composite technology and the production, use, and performance of cement-based construction materials. It covers a wide range of materials, including fiber-reinforced composites, polymer composites, ferrocement, and those incorporating special aggregates or waste materials. Major themes include microstructure, material properties, testing, durability, mechanics, modeling, design, fabrication, and practical applications. The journal welcomes papers on structural behavior, field studies, repair and maintenance, serviceability, and sustainability. It aims to enhance understanding, provide a platform for unconventional materials, promote low-cost energy-saving materials, and bridge the gap between materials science, engineering, and construction. Special issues on emerging topics are also published to encourage collaboration between materials scientists, engineers, designers, and fabricators.