Feng Feng, Yibo Liu, Ke Zhang, Hang Yang, Byung-Ryool Hyun, Ke Xu, Hoi-Sing Kwok, Zhaojun Liu
{"title":"High-power AlGaN deep-ultraviolet micro-light-emitting diode displays for maskless photolithography","authors":"Feng Feng, Yibo Liu, Ke Zhang, Hang Yang, Byung-Ryool Hyun, Ke Xu, Hoi-Sing Kwok, Zhaojun Liu","doi":"10.1038/s41566-024-01551-7","DOIUrl":null,"url":null,"abstract":"<p>Developing aluminium gallium nitride deep-ultraviolet (UVC) micro-light-emitting diodes (micro-LEDs) with sufficient power has been a challenge, which particularly limits these devices to various applications. However, advanced fabrication processes have been developed to enable the demonstration of highly efficient 270 nm UVC micro-LEDs and large-format UVC micro-LED displays with high resolution for maskless photolithography. Optical and electrical characterizations were performed on UVC micro-LEDs with sizes ranging from 3 µm to 100 μm to evaluate these emerging devices. The 3 μm device achieved a record-high peak external quantum efficiency of 5.7% and a maximum brightness of 396 W cm<sup>–2</sup>. Moreover, 2,540 pixels per inch parallel-connected UVC micro-LED arrays featuring rear-side reflection layers exhibited emission uniformity and collimation. UVC micro-LED displays, with a resolution of 320 × 140, were explicitly designed for maskless photolithography applications utilizing a customized integrated circuit driver for optimal performance. The UVC micro-LEDs and UVC micro-displays provide sufficient doses to fully expose the photoresist film within seconds, owing to their enhanced current spreading uniformity, improved heat dispersion and superior light extraction efficiency. This work may open a path to maskless photolithography, potentially leading to revolutionary developments in the semiconductor industry.</p>","PeriodicalId":18926,"journal":{"name":"Nature Photonics","volume":"6 1","pages":""},"PeriodicalIF":32.3000,"publicationDate":"2024-10-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Photonics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1038/s41566-024-01551-7","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"OPTICS","Score":null,"Total":0}
引用次数: 0
Abstract
Developing aluminium gallium nitride deep-ultraviolet (UVC) micro-light-emitting diodes (micro-LEDs) with sufficient power has been a challenge, which particularly limits these devices to various applications. However, advanced fabrication processes have been developed to enable the demonstration of highly efficient 270 nm UVC micro-LEDs and large-format UVC micro-LED displays with high resolution for maskless photolithography. Optical and electrical characterizations were performed on UVC micro-LEDs with sizes ranging from 3 µm to 100 μm to evaluate these emerging devices. The 3 μm device achieved a record-high peak external quantum efficiency of 5.7% and a maximum brightness of 396 W cm–2. Moreover, 2,540 pixels per inch parallel-connected UVC micro-LED arrays featuring rear-side reflection layers exhibited emission uniformity and collimation. UVC micro-LED displays, with a resolution of 320 × 140, were explicitly designed for maskless photolithography applications utilizing a customized integrated circuit driver for optimal performance. The UVC micro-LEDs and UVC micro-displays provide sufficient doses to fully expose the photoresist film within seconds, owing to their enhanced current spreading uniformity, improved heat dispersion and superior light extraction efficiency. This work may open a path to maskless photolithography, potentially leading to revolutionary developments in the semiconductor industry.
期刊介绍:
Nature Photonics is a monthly journal dedicated to the scientific study and application of light, known as Photonics. It publishes top-quality, peer-reviewed research across all areas of light generation, manipulation, and detection.
The journal encompasses research into the fundamental properties of light and its interactions with matter, as well as the latest developments in optoelectronic devices and emerging photonics applications. Topics covered include lasers, LEDs, imaging, detectors, optoelectronic devices, quantum optics, biophotonics, optical data storage, spectroscopy, fiber optics, solar energy, displays, terahertz technology, nonlinear optics, plasmonics, nanophotonics, and X-rays.
In addition to research papers and review articles summarizing scientific findings in optoelectronics, Nature Photonics also features News and Views pieces and research highlights. It uniquely includes articles on the business aspects of the industry, such as technology commercialization and market analysis, offering a comprehensive perspective on the field.