Junkai Shao, Wenzhe Tang, Jing Ji, Chengqi Xue, Feng Lu
{"title":"Interference inhibition of multimodal information in digital interfaces and its rule of cognitive processing","authors":"Junkai Shao, Wenzhe Tang, Jing Ji, Chengqi Xue, Feng Lu","doi":"10.1002/hfm.21054","DOIUrl":null,"url":null,"abstract":"<p>In the digital interface of multimodal audio–visual presentation, the appearance of irrelevant information often brings cognitive interference or even confusion, leading to decision-making errors when users focus on or manipulate the interface target. However, few studies have explored the brain's inhibition effect and cognitive law evoked by audio–visual interference from the perspective of interface information design. On the basis of Stroop's classic interference task, an experimental paradigm of multimodal audio–visual stimuli to induce event-related potential (ERP) components was designed for digital interfaces in this study. Combining behavioral measurement and ERP technology, this study discussed the differences in the induced inhibition effects between the two carriers under various audio–visual interferences. The findings demonstrated that all five interference stimuli, based on functional icons and Chinese characters, elicited significant N250 and N400, with a similar time course. Compared with the Chinese character group, the functional icon group elicited more negative activity in the frontal and some parietal-occipital regions, indicating that the functional icon required more cognitive inhibitory resources to resist interference stimuli. Moreover, the inhibition effect induced by audio–visual interference with the same semantics was significantly lower than that of opposite semantics and even lower than that of single-sensory interference. The findings offered physiological evidence for the inhibition effect induced by audio–visual semantic interference in digital interfaces and proposed design principles for the interface information of human–machine systems.</p>","PeriodicalId":55048,"journal":{"name":"Human Factors and Ergonomics in Manufacturing & Service Industries","volume":"34 6","pages":"618-634"},"PeriodicalIF":2.2000,"publicationDate":"2024-09-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Human Factors and Ergonomics in Manufacturing & Service Industries","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/hfm.21054","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, MANUFACTURING","Score":null,"Total":0}
引用次数: 0
Abstract
In the digital interface of multimodal audio–visual presentation, the appearance of irrelevant information often brings cognitive interference or even confusion, leading to decision-making errors when users focus on or manipulate the interface target. However, few studies have explored the brain's inhibition effect and cognitive law evoked by audio–visual interference from the perspective of interface information design. On the basis of Stroop's classic interference task, an experimental paradigm of multimodal audio–visual stimuli to induce event-related potential (ERP) components was designed for digital interfaces in this study. Combining behavioral measurement and ERP technology, this study discussed the differences in the induced inhibition effects between the two carriers under various audio–visual interferences. The findings demonstrated that all five interference stimuli, based on functional icons and Chinese characters, elicited significant N250 and N400, with a similar time course. Compared with the Chinese character group, the functional icon group elicited more negative activity in the frontal and some parietal-occipital regions, indicating that the functional icon required more cognitive inhibitory resources to resist interference stimuli. Moreover, the inhibition effect induced by audio–visual interference with the same semantics was significantly lower than that of opposite semantics and even lower than that of single-sensory interference. The findings offered physiological evidence for the inhibition effect induced by audio–visual semantic interference in digital interfaces and proposed design principles for the interface information of human–machine systems.
期刊介绍:
The purpose of Human Factors and Ergonomics in Manufacturing & Service Industries is to facilitate discovery, integration, and application of scientific knowledge about human aspects of manufacturing, and to provide a forum for worldwide dissemination of such knowledge for its application and benefit to manufacturing industries. The journal covers a broad spectrum of ergonomics and human factors issues with a focus on the design, operation and management of contemporary manufacturing systems, both in the shop floor and office environments, in the quest for manufacturing agility, i.e. enhancement and integration of human skills with hardware performance for improved market competitiveness, management of change, product and process quality, and human-system reliability. The inter- and cross-disciplinary nature of the journal allows for a wide scope of issues relevant to manufacturing system design and engineering, human resource management, social, organizational, safety, and health issues. Examples of specific subject areas of interest include: implementation of advanced manufacturing technology, human aspects of computer-aided design and engineering, work design, compensation and appraisal, selection training and education, labor-management relations, agile manufacturing and virtual companies, human factors in total quality management, prevention of work-related musculoskeletal disorders, ergonomics of workplace, equipment and tool design, ergonomics programs, guides and standards for industry, automation safety and robot systems, human skills development and knowledge enhancing technologies, reliability, and safety and worker health issues.