Tubings, chord diagrams, and Dyson–Schwinger equations

IF 1 2区 数学 Q1 MATHEMATICS
Paul-Hermann Balduf, Amelia Cantwell, Kurusch Ebrahimi-Fard, Lukas Nabergall, Nicholas Olson-Harris, Karen Yeats
{"title":"Tubings, chord diagrams, and Dyson–Schwinger equations","authors":"Paul-Hermann Balduf,&nbsp;Amelia Cantwell,&nbsp;Kurusch Ebrahimi-Fard,&nbsp;Lukas Nabergall,&nbsp;Nicholas Olson-Harris,&nbsp;Karen Yeats","doi":"10.1112/jlms.70006","DOIUrl":null,"url":null,"abstract":"<p>We give series solutions to single insertion place propagator-type systems of Dyson–Schwinger equations using binary tubings of rooted trees. These solutions are combinatorially transparent in the sense that each tubing has a straightforward contribution. The Dyson–Schwinger equations solved here are more general than those previously solved by chord diagram techniques, including systems and noninteger values of the insertion parameter <span></span><math>\n <semantics>\n <mi>s</mi>\n <annotation>$s$</annotation>\n </semantics></math>. We remark on interesting combinatorial connections and properties.</p>","PeriodicalId":49989,"journal":{"name":"Journal of the London Mathematical Society-Second Series","volume":null,"pages":null},"PeriodicalIF":1.0000,"publicationDate":"2024-10-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1112/jlms.70006","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the London Mathematical Society-Second Series","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1112/jlms.70006","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

We give series solutions to single insertion place propagator-type systems of Dyson–Schwinger equations using binary tubings of rooted trees. These solutions are combinatorially transparent in the sense that each tubing has a straightforward contribution. The Dyson–Schwinger equations solved here are more general than those previously solved by chord diagram techniques, including systems and noninteger values of the insertion parameter s $s$ . We remark on interesting combinatorial connections and properties.

Abstract Image

管线、弦图和戴森-施文格方程
我们给出了戴森-施文格方程的单插入位置传播者型系统的系列解,使用的是有根树的二元管道。这些解在组合上是透明的,因为每个管道都有直接的贡献。这里求解的戴森-施温格方程比以前用弦图技术求解的方程更普遍,包括插入参数 s $s$ 的系统和非整数值。我们对有趣的组合关系和性质进行了评论。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.90
自引率
0.00%
发文量
186
审稿时长
6-12 weeks
期刊介绍: The Journal of the London Mathematical Society has been publishing leading research in a broad range of mathematical subject areas since 1926. The Journal welcomes papers on subjects of general interest that represent a significant advance in mathematical knowledge, as well as submissions that are deemed to stimulate new interest and research activity.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信