N. J. Noh, A. A. Renchon, J. Knauer, V. Haverd, J. Li, A. Griebel, C. V. M. Barton, J. Yang, D. Sihi, S. K. Arndt, E. A. Davidson, M. G. Tjoelker, E. Pendall
{"title":"Reconciling Top-Down and Bottom-Up Estimates of Ecosystem Respiration in a Mature Eucalypt Forest","authors":"N. J. Noh, A. A. Renchon, J. Knauer, V. Haverd, J. Li, A. Griebel, C. V. M. Barton, J. Yang, D. Sihi, S. K. Arndt, E. A. Davidson, M. G. Tjoelker, E. Pendall","doi":"10.1029/2024JG008064","DOIUrl":null,"url":null,"abstract":"<p>Ecosystem respiration (R<sub>eco</sub>) arises from interacting autotrophic and heterotrophic processes constrained by distinct drivers. Here, we evaluated up-scaling of observed components of R<sub>eco</sub> in a mature eucalypt forest in southeast Australia and assessed whether a land surface model adequately represented all the fluxes and their seasonal temperature responses. We measured respiration from soil (R<sub>soil</sub>), heterotrophic soil microbes (R<sub>h</sub>), roots (R<sub>root</sub>), and stems (R<sub>stem</sub>) in 2018–2019. R<sub>eco</sub> and its components were simulated using the CABLE–POP (Community Atmosphere-Biosphere Land Exchange–Population Orders Physiology) land surface model, constrained by eddy covariance and chamber measurements and enabled with a newly implemented Dual Arrhenius and Michaelis-Menten (DAMM) module for soil organic matter decomposition. Eddy-covariance based R<sub>eco</sub> (R<sub>eco.eddy</sub>, 1,439 g C m<sup>−2</sup> y<sup>−1</sup>) was slightly higher than the sum of the respiration components (R<sub>eco.sum,</sub> 1,295 g C m<sup>−2</sup> y<sup>−1</sup>) and simulated R<sub>eco</sub> (1,297 g C m<sup>−2</sup> y<sup>−1</sup>). The largest mean contribution to R<sub>eco</sub> was from R<sub>soil</sub> (64%) across seasons. The measured contributions of R<sub>h</sub> (49%), R<sub>root</sub> (15%), and R<sub>stem</sub> (22%) to R<sub>eco.sum</sub> were very close to model outputs of 46%, 11%, and 22%, respectively. The modeled R<sub>h</sub> was highly correlated with measured R<sub>h</sub> (R<sup>2</sup> = 0.66, RMSE = 0.61), empirically validating the DAMM module. The apparent temperature sensitivities (Q<sub>10</sub>) of R<sub>eco</sub> were 2.22 for R<sub>eco.sum</sub>, 2.15 for R<sub>eco.eddy</sub>, and 1.57 for CABLE-POP. This research demonstrated that bottom-up respiration component measurements can be successfully scaled to eddy covariance-based R<sub>eco</sub> and help to better constrain the magnitude of individual respiration components as well as their temperature sensitivities in land surface models.</p>","PeriodicalId":16003,"journal":{"name":"Journal of Geophysical Research: Biogeosciences","volume":null,"pages":null},"PeriodicalIF":3.7000,"publicationDate":"2024-10-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1029/2024JG008064","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Geophysical Research: Biogeosciences","FirstCategoryId":"93","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1029/2024JG008064","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Ecosystem respiration (Reco) arises from interacting autotrophic and heterotrophic processes constrained by distinct drivers. Here, we evaluated up-scaling of observed components of Reco in a mature eucalypt forest in southeast Australia and assessed whether a land surface model adequately represented all the fluxes and their seasonal temperature responses. We measured respiration from soil (Rsoil), heterotrophic soil microbes (Rh), roots (Rroot), and stems (Rstem) in 2018–2019. Reco and its components were simulated using the CABLE–POP (Community Atmosphere-Biosphere Land Exchange–Population Orders Physiology) land surface model, constrained by eddy covariance and chamber measurements and enabled with a newly implemented Dual Arrhenius and Michaelis-Menten (DAMM) module for soil organic matter decomposition. Eddy-covariance based Reco (Reco.eddy, 1,439 g C m−2 y−1) was slightly higher than the sum of the respiration components (Reco.sum, 1,295 g C m−2 y−1) and simulated Reco (1,297 g C m−2 y−1). The largest mean contribution to Reco was from Rsoil (64%) across seasons. The measured contributions of Rh (49%), Rroot (15%), and Rstem (22%) to Reco.sum were very close to model outputs of 46%, 11%, and 22%, respectively. The modeled Rh was highly correlated with measured Rh (R2 = 0.66, RMSE = 0.61), empirically validating the DAMM module. The apparent temperature sensitivities (Q10) of Reco were 2.22 for Reco.sum, 2.15 for Reco.eddy, and 1.57 for CABLE-POP. This research demonstrated that bottom-up respiration component measurements can be successfully scaled to eddy covariance-based Reco and help to better constrain the magnitude of individual respiration components as well as their temperature sensitivities in land surface models.
期刊介绍:
JGR-Biogeosciences focuses on biogeosciences of the Earth system in the past, present, and future and the extension of this research to planetary studies. The emerging field of biogeosciences spans the intellectual interface between biology and the geosciences and attempts to understand the functions of the Earth system across multiple spatial and temporal scales. Studies in biogeosciences may use multiple lines of evidence drawn from diverse fields to gain a holistic understanding of terrestrial, freshwater, and marine ecosystems and extreme environments. Specific topics within the scope of the section include process-based theoretical, experimental, and field studies of biogeochemistry, biogeophysics, atmosphere-, land-, and ocean-ecosystem interactions, biomineralization, life in extreme environments, astrobiology, microbial processes, geomicrobiology, and evolutionary geobiology