Prafful Kumar Meena, Jai Gopal Sharma, Manish Jain
{"title":"Recovery of Whey Protein by Using Microfiltration: Artificial Neural Network–Based Modeling and Effects of Different Operating Parameters","authors":"Prafful Kumar Meena, Jai Gopal Sharma, Manish Jain","doi":"10.1111/jfpe.14756","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>Microfiltration is one of the most suitable processes for protein recovery from whey due to its low energy consumption and lack of use of heat and chemicals. However, membrane fouling is one of the limiting factors in the microfiltration process, preventing its commercial use. In this study, an artificial neural network (ANN) based model was employed to study the effects of different operating parameters on membrane fouling in whey concentration. Trans-membrane pressure, Reynolds number, and feed temperature were selected as the input parameters. Experimental data from the available studies were used to train the ANN. The ANN with 23 neurons gave a minimum mean squared error (MSE) for trans-membrane pressure and Reynolds number. The ANN with seven neurons gave the minimum MSE for feed temperature. The predicted values from both ANNs well fitted with the experimental results with <i>R</i><sup>2</sup> < 0.99. Simulations showed that membrane fouling increased as flux reduction increased from 36.3% to 76.39% when trans-membrane pressure increased from 0.5 to 2 bar. In contrast, a 19.96% reduction in flux was observed by increasing the Reynolds number from 750 to 2500. An increment of 77.37% of flux reduction was observed with increasing feed temperature from 30°C to 40°C. Simulations confirmed that transmembrane pressure, Reynolds number, and feed temperature strongly influence membrane fouling. An ANN-based approach was the most accurate method to model membrane fouling for whey protein separation.</p>\n </div>","PeriodicalId":15932,"journal":{"name":"Journal of Food Process Engineering","volume":"47 10","pages":""},"PeriodicalIF":2.7000,"publicationDate":"2024-10-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Food Process Engineering","FirstCategoryId":"97","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/jfpe.14756","RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Microfiltration is one of the most suitable processes for protein recovery from whey due to its low energy consumption and lack of use of heat and chemicals. However, membrane fouling is one of the limiting factors in the microfiltration process, preventing its commercial use. In this study, an artificial neural network (ANN) based model was employed to study the effects of different operating parameters on membrane fouling in whey concentration. Trans-membrane pressure, Reynolds number, and feed temperature were selected as the input parameters. Experimental data from the available studies were used to train the ANN. The ANN with 23 neurons gave a minimum mean squared error (MSE) for trans-membrane pressure and Reynolds number. The ANN with seven neurons gave the minimum MSE for feed temperature. The predicted values from both ANNs well fitted with the experimental results with R2 < 0.99. Simulations showed that membrane fouling increased as flux reduction increased from 36.3% to 76.39% when trans-membrane pressure increased from 0.5 to 2 bar. In contrast, a 19.96% reduction in flux was observed by increasing the Reynolds number from 750 to 2500. An increment of 77.37% of flux reduction was observed with increasing feed temperature from 30°C to 40°C. Simulations confirmed that transmembrane pressure, Reynolds number, and feed temperature strongly influence membrane fouling. An ANN-based approach was the most accurate method to model membrane fouling for whey protein separation.
期刊介绍:
This international research journal focuses on the engineering aspects of post-production handling, storage, processing, packaging, and distribution of food. Read by researchers, food and chemical engineers, and industry experts, this is the only international journal specifically devoted to the engineering aspects of food processing. Co-Editors M. Elena Castell-Perez and Rosana Moreira, both of Texas A&M University, welcome papers covering the best original research on applications of engineering principles and concepts to food and food processes.