Thermodynamic performance of hot air drying system: Energy and exergy analysis for wet glass containers in honey processing plant

IF 2.7 3区 农林科学 Q3 ENGINEERING, CHEMICAL
Ahmad Piri, Amin Hazervazifeh
{"title":"Thermodynamic performance of hot air drying system: Energy and exergy analysis for wet glass containers in honey processing plant","authors":"Ahmad Piri,&nbsp;Amin Hazervazifeh","doi":"10.1111/jfpe.14741","DOIUrl":null,"url":null,"abstract":"<div>\n \n \n <section>\n \n <p>Considering environmental challenges and the diminishing share of energy expenses in the final product cost, evaluating energy-intensive systems is crucial. This study examines the drying process of wet glass containers in a honey processing plant using a continuous convection dryer through energy and exergy analyses. Mass, energy, and exergy balances were performed using EES software. The energetic performance indicators revealed a heat loss rate of 3.33 kW, energy efficiency of 20.45%, and specific energy consumption of 11711.25 kJ kg<sup>-1</sup>H₂O. Exergetic performance indicators included an exergy destruction rate of 24.05 kW, improvement potential rate of 20.79 kW, total exergy efficiency of 14.14%, exergy efficiency of 11.14%, specific exergy consumption of 2763.92 kJ kg<sup>-1</sup>H₂O, and a sustainability index of 1.16. Results indicated that 60.12% of exergy destruction is related to air heating, with exhaust air losing 200.54 kW, equivalent to 89.84% of total input energy, suggesting exhaust air recirculation to reduce losses.</p>\n </section>\n \n <section>\n \n <h3> Practical applications</h3>\n \n <p>The wet container dryer in a honey processing plant, as the most energy-intensive component, was chosen for thermodynamic analysis. Mass, energy, and exergy balances were conducted to evaluate the system's thermodynamic performance. The exhaust air dryer lost 200.54 kW, equivalent to 89.84% of the total input energy, without utilization. Additionally, the results showed that 60.12% of the total exergy destruction in the convective drying process was related to air heating. Therefore, recirculating the exhaust air from the dryer moves the system toward an ideal thermodynamic state.</p>\n </section>\n </div>","PeriodicalId":15932,"journal":{"name":"Journal of Food Process Engineering","volume":"47 10","pages":""},"PeriodicalIF":2.7000,"publicationDate":"2024-10-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Food Process Engineering","FirstCategoryId":"97","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/jfpe.14741","RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Considering environmental challenges and the diminishing share of energy expenses in the final product cost, evaluating energy-intensive systems is crucial. This study examines the drying process of wet glass containers in a honey processing plant using a continuous convection dryer through energy and exergy analyses. Mass, energy, and exergy balances were performed using EES software. The energetic performance indicators revealed a heat loss rate of 3.33 kW, energy efficiency of 20.45%, and specific energy consumption of 11711.25 kJ kg-1H₂O. Exergetic performance indicators included an exergy destruction rate of 24.05 kW, improvement potential rate of 20.79 kW, total exergy efficiency of 14.14%, exergy efficiency of 11.14%, specific exergy consumption of 2763.92 kJ kg-1H₂O, and a sustainability index of 1.16. Results indicated that 60.12% of exergy destruction is related to air heating, with exhaust air losing 200.54 kW, equivalent to 89.84% of total input energy, suggesting exhaust air recirculation to reduce losses.

Practical applications

The wet container dryer in a honey processing plant, as the most energy-intensive component, was chosen for thermodynamic analysis. Mass, energy, and exergy balances were conducted to evaluate the system's thermodynamic performance. The exhaust air dryer lost 200.54 kW, equivalent to 89.84% of the total input energy, without utilization. Additionally, the results showed that 60.12% of the total exergy destruction in the convective drying process was related to air heating. Therefore, recirculating the exhaust air from the dryer moves the system toward an ideal thermodynamic state.

Abstract Image

热空气干燥系统的热力学性能:蜂蜜加工厂湿玻璃容器的能量和放能分析
考虑到环境挑战和能源费用在最终产品成本中所占比例的不断降低,对能源密集型系统进行评估至关重要。本研究通过能量和放能分析,研究了蜂蜜加工厂使用连续对流干燥机干燥湿玻璃容器的过程。使用 EES 软件进行了质量、能量和放能平衡。能效指标显示,热损失率为 3.33 kW,能效为 20.45%,比能耗为 11711.25 kJ kg-1H₂O。放能性能指标包括放能破坏率 24.05 kW、改善潜力率 20.79 kW、总放能效率 14.14%、放能效率 11.14%、比能耗 2763.92 kJ kg-1H₂O,以及可持续性指数 1.16。结果表明,60.12% 的放能破坏与空气加热有关,废气损失 200.54 千瓦,相当于总输入能量的 89.84%,建议采用废气再循环来减少损失。 实际应用 我们选择了蜂蜜加工厂的湿容器干燥机作为能耗最大的部件进行热力学分析。进行了质量、能量和放能平衡,以评估系统的热力学性能。废气干燥器在未被利用的情况下损失了 200.54 千瓦,相当于总输入能量的 89.84%。此外,结果表明,对流干燥过程中总能量损失的 60.12% 与空气加热有关。因此,对干燥机排出的空气进行再循环可使系统达到理想的热力学状态。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Food Process Engineering
Journal of Food Process Engineering 工程技术-工程:化工
CiteScore
5.70
自引率
10.00%
发文量
259
审稿时长
2 months
期刊介绍: This international research journal focuses on the engineering aspects of post-production handling, storage, processing, packaging, and distribution of food. Read by researchers, food and chemical engineers, and industry experts, this is the only international journal specifically devoted to the engineering aspects of food processing. Co-Editors M. Elena Castell-Perez and Rosana Moreira, both of Texas A&M University, welcome papers covering the best original research on applications of engineering principles and concepts to food and food processes.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信