{"title":"Graph convex hull bounds as generalized Jensen inequalities","authors":"Ilja Klebanov","doi":"10.1112/blms.13116","DOIUrl":null,"url":null,"abstract":"<p>Jensen's inequality is ubiquitous in measure and probability theory, statistics, machine learning, information theory and many other areas of mathematics and data science. It states that, for any convex function <span></span><math>\n <semantics>\n <mrow>\n <mi>f</mi>\n <mo>:</mo>\n <mi>K</mi>\n <mo>→</mo>\n <mi>R</mi>\n </mrow>\n <annotation>$f\\colon K \\rightarrow \\mathbb {R}$</annotation>\n </semantics></math> defined on a convex domain <span></span><math>\n <semantics>\n <mrow>\n <mi>K</mi>\n <mo>⊆</mo>\n <msup>\n <mi>R</mi>\n <mi>d</mi>\n </msup>\n </mrow>\n <annotation>$K \\subseteq \\mathbb {R}^{d}$</annotation>\n </semantics></math> and any random variable <span></span><math>\n <semantics>\n <mi>X</mi>\n <annotation>$X$</annotation>\n </semantics></math> taking values in <span></span><math>\n <semantics>\n <mi>K</mi>\n <annotation>$K$</annotation>\n </semantics></math>, <span></span><math>\n <semantics>\n <mrow>\n <mi>E</mi>\n <mo>[</mo>\n <mi>f</mi>\n <mo>(</mo>\n <mi>X</mi>\n <mo>)</mo>\n <mo>]</mo>\n <mo>⩾</mo>\n <mi>f</mi>\n <mo>(</mo>\n <mi>E</mi>\n <mo>[</mo>\n <mi>X</mi>\n <mo>]</mo>\n <mo>)</mo>\n </mrow>\n <annotation>$\\mathbb {E}[f(X)] \\geqslant f(\\mathbb {E}[X])$</annotation>\n </semantics></math>. In this paper, sharp upper and lower bounds on <span></span><math>\n <semantics>\n <mrow>\n <mi>E</mi>\n <mo>[</mo>\n <mi>f</mi>\n <mo>(</mo>\n <mi>X</mi>\n <mo>)</mo>\n <mo>]</mo>\n </mrow>\n <annotation>$\\mathbb {E}[f(X)]$</annotation>\n </semantics></math>, termed ‘graph convex hull bounds’, are derived for arbitrary functions <span></span><math>\n <semantics>\n <mi>f</mi>\n <annotation>$f$</annotation>\n </semantics></math> on arbitrary domains <span></span><math>\n <semantics>\n <mi>K</mi>\n <annotation>$K$</annotation>\n </semantics></math>, thereby extensively generalizing Jensen's inequality. The derivation of these bounds necessitates the investigation of the convex hull of the graph of <span></span><math>\n <semantics>\n <mi>f</mi>\n <annotation>$f$</annotation>\n </semantics></math>, which can be challenging for complex functions. On the other hand, once these inequalities are established, they hold, just like Jensen's inequality, for <i>any</i> <span></span><math>\n <semantics>\n <mi>K</mi>\n <annotation>$K$</annotation>\n </semantics></math>-valued random variable <span></span><math>\n <semantics>\n <mi>X</mi>\n <annotation>$X$</annotation>\n </semantics></math>. Therefore, these bounds are of particular interest in cases where <span></span><math>\n <semantics>\n <mi>f</mi>\n <annotation>$f$</annotation>\n </semantics></math> is relatively simple and <span></span><math>\n <semantics>\n <mi>X</mi>\n <annotation>$X$</annotation>\n </semantics></math> is complicated or unknown. Both finite- and infinite-dimensional domains and codomains of <span></span><math>\n <semantics>\n <mi>f</mi>\n <annotation>$f$</annotation>\n </semantics></math> are covered as well as analogous bounds for conditional expectations and Markov operators.</p>","PeriodicalId":55298,"journal":{"name":"Bulletin of the London Mathematical Society","volume":"56 10","pages":"3061-3074"},"PeriodicalIF":0.8000,"publicationDate":"2024-07-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1112/blms.13116","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bulletin of the London Mathematical Society","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1112/blms.13116","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
Jensen's inequality is ubiquitous in measure and probability theory, statistics, machine learning, information theory and many other areas of mathematics and data science. It states that, for any convex function defined on a convex domain and any random variable taking values in , . In this paper, sharp upper and lower bounds on , termed ‘graph convex hull bounds’, are derived for arbitrary functions on arbitrary domains , thereby extensively generalizing Jensen's inequality. The derivation of these bounds necessitates the investigation of the convex hull of the graph of , which can be challenging for complex functions. On the other hand, once these inequalities are established, they hold, just like Jensen's inequality, for any -valued random variable . Therefore, these bounds are of particular interest in cases where is relatively simple and is complicated or unknown. Both finite- and infinite-dimensional domains and codomains of are covered as well as analogous bounds for conditional expectations and Markov operators.
詹森不等式在度量和概率论、统计学、机器学习、信息论以及数学和数据科学的许多其他领域无处不在。它指出,对于定义在凸域 K ⊆ R d $K \subseteq \mathbb {R}^{d}$ 上的任何凸函数 f : K → R $f\colon K \rightarrow \mathbb {R}$ 和在 K $K$ 中取值的任何随机变量 X $X$ ,E [ f ( X ) ] ⩾ f ( E [ X ) ] ⩾ E [ X ) ⩾ f ( E [ X ] ) $\mathbb {E}[f(X)] \geqslant f(\mathbb {E}[X])$ .本文提出了关于 E [ f ( X ) ] 的尖锐上界和下界。 $\mathbb {E}[f(X)]$ 被称为 "图凸壳边界",是针对任意域 K $K$ 上的任意函数 f $f$ 推导的,从而广泛推广了詹森不等式。这些边界的推导需要研究 f $f$ 的图凸壳,这对复杂函数来说可能具有挑战性。另一方面,一旦建立了这些不等式,它们就会像詹森不等式一样,对于任何 K $K$ 有值随机变量 X $X$ 都成立。因此,在 f $f$ 相对简单而 X $X$ 复杂或未知的情况下,这些界限特别有意义。本文涵盖了 f $f$ 的有限维和无限维域和编域,以及条件期望和马尔可夫算子的类似边界。