A. Kurnosov, G. Criniti, T. Boffa Ballaran, H. Marquardt, D. J. Frost
{"title":"High pressure and high temperature Brillouin scattering measurements of pyrope single crystals using flexible CO2 laser heating systems","authors":"A. Kurnosov, G. Criniti, T. Boffa Ballaran, H. Marquardt, D. J. Frost","doi":"10.1007/s00269-024-01297-2","DOIUrl":null,"url":null,"abstract":"<div><p>Single-crystal Brillouin scattering measurements are important for interpreting seismic velocities within the Earth and other planetary interiors. These measurements are rare, however, at temperatures above 1000 K, due to the fact that the transparent samples cannot be heated by common laser heating systems operating at a wavelength on the order of 1 μm. Here we present Brillouin scattering data on pyrope collected at pressures up to 23.8 GPa and temperatures between 850 and 1900 K using a novel CO<sub>2</sub> laser heating system confined in either a flexible hollow silica waveguide or an articulated arm with mirrors mounted in each junction to direct the laser to the exit point. Pyrope has been chosen because it has been extensively studied at high pressures and moderate temperatures and therefore it is an excellent sample for bench-marking the CO<sub>2</sub> laser heating system. The new high-temperature velocity data collected in this study allow the room pressure thermal parameters of pyrope to be constrained more tightly, resulting in values that reproduce the temperature dependence of the unit-cell volume of pyrope measured in recent studies at ambient pressure. Aggregate wave velocities of pyrope calculated along an adiabat using the thermoelastic parameters determined in this study are larger than those obtained using published values, implying that velocities for many mantle components may be underestimated at mantle temperatures because high temperature experimental data are lacking.</p></div>","PeriodicalId":20132,"journal":{"name":"Physics and Chemistry of Minerals","volume":null,"pages":null},"PeriodicalIF":1.2000,"publicationDate":"2024-10-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s00269-024-01297-2.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physics and Chemistry of Minerals","FirstCategoryId":"89","ListUrlMain":"https://link.springer.com/article/10.1007/s00269-024-01297-2","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Single-crystal Brillouin scattering measurements are important for interpreting seismic velocities within the Earth and other planetary interiors. These measurements are rare, however, at temperatures above 1000 K, due to the fact that the transparent samples cannot be heated by common laser heating systems operating at a wavelength on the order of 1 μm. Here we present Brillouin scattering data on pyrope collected at pressures up to 23.8 GPa and temperatures between 850 and 1900 K using a novel CO2 laser heating system confined in either a flexible hollow silica waveguide or an articulated arm with mirrors mounted in each junction to direct the laser to the exit point. Pyrope has been chosen because it has been extensively studied at high pressures and moderate temperatures and therefore it is an excellent sample for bench-marking the CO2 laser heating system. The new high-temperature velocity data collected in this study allow the room pressure thermal parameters of pyrope to be constrained more tightly, resulting in values that reproduce the temperature dependence of the unit-cell volume of pyrope measured in recent studies at ambient pressure. Aggregate wave velocities of pyrope calculated along an adiabat using the thermoelastic parameters determined in this study are larger than those obtained using published values, implying that velocities for many mantle components may be underestimated at mantle temperatures because high temperature experimental data are lacking.
期刊介绍:
Physics and Chemistry of Minerals is an international journal devoted to publishing articles and short communications of physical or chemical studies on minerals or solids related to minerals. The aim of the journal is to support competent interdisciplinary work in mineralogy and physics or chemistry. Particular emphasis is placed on applications of modern techniques or new theories and models to interpret atomic structures and physical or chemical properties of minerals. Some subjects of interest are:
-Relationships between atomic structure and crystalline state (structures of various states, crystal energies, crystal growth, thermodynamic studies, phase transformations, solid solution, exsolution phenomena, etc.)
-General solid state spectroscopy (ultraviolet, visible, infrared, Raman, ESCA, luminescence, X-ray, electron paramagnetic resonance, nuclear magnetic resonance, gamma ray resonance, etc.)
-Experimental and theoretical analysis of chemical bonding in minerals (application of crystal field, molecular orbital, band theories, etc.)
-Physical properties (magnetic, mechanical, electric, optical, thermodynamic, etc.)
-Relations between thermal expansion, compressibility, elastic constants, and fundamental properties of atomic structure, particularly as applied to geophysical problems
-Electron microscopy in support of physical and chemical studies
-Computational methods in the study of the structure and properties of minerals
-Mineral surfaces (experimental methods, structure and properties)