High pressure and high temperature Brillouin scattering measurements of pyrope single crystals using flexible CO2 laser heating systems

IF 1.2 4区 地球科学 Q4 MATERIALS SCIENCE, MULTIDISCIPLINARY
A. Kurnosov, G. Criniti, T. Boffa Ballaran, H. Marquardt, D. J. Frost
{"title":"High pressure and high temperature Brillouin scattering measurements of pyrope single crystals using flexible CO2 laser heating systems","authors":"A. Kurnosov,&nbsp;G. Criniti,&nbsp;T. Boffa Ballaran,&nbsp;H. Marquardt,&nbsp;D. J. Frost","doi":"10.1007/s00269-024-01297-2","DOIUrl":null,"url":null,"abstract":"<div><p>Single-crystal Brillouin scattering measurements are important for interpreting seismic velocities within the Earth and other planetary interiors. These measurements are rare, however, at temperatures above 1000 K, due to the fact that the transparent samples cannot be heated by common laser heating systems operating at a wavelength on the order of 1 μm. Here we present Brillouin scattering data on pyrope collected at pressures up to 23.8 GPa and temperatures between 850 and 1900 K using a novel CO<sub>2</sub> laser heating system confined in either a flexible hollow silica waveguide or an articulated arm with mirrors mounted in each junction to direct the laser to the exit point. Pyrope has been chosen because it has been extensively studied at high pressures and moderate temperatures and therefore it is an excellent sample for bench-marking the CO<sub>2</sub> laser heating system. The new high-temperature velocity data collected in this study allow the room pressure thermal parameters of pyrope to be constrained more tightly, resulting in values that reproduce the temperature dependence of the unit-cell volume of pyrope measured in recent studies at ambient pressure. Aggregate wave velocities of pyrope calculated along an adiabat using the thermoelastic parameters determined in this study are larger than those obtained using published values, implying that velocities for many mantle components may be underestimated at mantle temperatures because high temperature experimental data are lacking.</p></div>","PeriodicalId":20132,"journal":{"name":"Physics and Chemistry of Minerals","volume":null,"pages":null},"PeriodicalIF":1.2000,"publicationDate":"2024-10-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s00269-024-01297-2.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physics and Chemistry of Minerals","FirstCategoryId":"89","ListUrlMain":"https://link.springer.com/article/10.1007/s00269-024-01297-2","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Single-crystal Brillouin scattering measurements are important for interpreting seismic velocities within the Earth and other planetary interiors. These measurements are rare, however, at temperatures above 1000 K, due to the fact that the transparent samples cannot be heated by common laser heating systems operating at a wavelength on the order of 1 μm. Here we present Brillouin scattering data on pyrope collected at pressures up to 23.8 GPa and temperatures between 850 and 1900 K using a novel CO2 laser heating system confined in either a flexible hollow silica waveguide or an articulated arm with mirrors mounted in each junction to direct the laser to the exit point. Pyrope has been chosen because it has been extensively studied at high pressures and moderate temperatures and therefore it is an excellent sample for bench-marking the CO2 laser heating system. The new high-temperature velocity data collected in this study allow the room pressure thermal parameters of pyrope to be constrained more tightly, resulting in values that reproduce the temperature dependence of the unit-cell volume of pyrope measured in recent studies at ambient pressure. Aggregate wave velocities of pyrope calculated along an adiabat using the thermoelastic parameters determined in this study are larger than those obtained using published values, implying that velocities for many mantle components may be underestimated at mantle temperatures because high temperature experimental data are lacking.

利用柔性二氧化碳激光加热系统对火烧云单晶进行高压和高温布里渊散射测量
单晶布里渊散射测量对于解释地球和其他行星内部的地震速度非常重要。然而,在 1000 K 以上的温度条件下,这种测量非常罕见,原因是波长为 1 μm 的普通激光加热系统无法对透明样品进行加热。在这里,我们展示了在压力高达 23.8 GPa、温度介于 850 至 1900 K 之间的条件下,使用新型 CO2 激光加热系统收集到的焦红的布里渊散射数据,该系统被限制在一个灵活的空心硅波导或一个铰接臂中,铰接臂的每个结点都安装了反射镜,以便将激光引导到出口点。之所以选择焦岩,是因为对它进行了大量的高压和中温研究,因此它是二氧化碳激光加热系统的绝佳样品。本研究中收集的新高温速度数据可以更严格地限制火绳草的室压热参数,从而得出的数值再现了最近的研究中在环境压力下测得的火绳草单位晶胞体积的温度依赖性。利用本研究确定的热弹性参数沿绝热线计算出的辉绿岩总波速大于利用已公布值计算出的波速,这意味着由于缺乏高温实验数据,许多地幔成分在地幔温度下的波速可能被低估了。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Physics and Chemistry of Minerals
Physics and Chemistry of Minerals 地学-材料科学:综合
CiteScore
2.90
自引率
14.30%
发文量
43
审稿时长
3 months
期刊介绍: Physics and Chemistry of Minerals is an international journal devoted to publishing articles and short communications of physical or chemical studies on minerals or solids related to minerals. The aim of the journal is to support competent interdisciplinary work in mineralogy and physics or chemistry. Particular emphasis is placed on applications of modern techniques or new theories and models to interpret atomic structures and physical or chemical properties of minerals. Some subjects of interest are: -Relationships between atomic structure and crystalline state (structures of various states, crystal energies, crystal growth, thermodynamic studies, phase transformations, solid solution, exsolution phenomena, etc.) -General solid state spectroscopy (ultraviolet, visible, infrared, Raman, ESCA, luminescence, X-ray, electron paramagnetic resonance, nuclear magnetic resonance, gamma ray resonance, etc.) -Experimental and theoretical analysis of chemical bonding in minerals (application of crystal field, molecular orbital, band theories, etc.) -Physical properties (magnetic, mechanical, electric, optical, thermodynamic, etc.) -Relations between thermal expansion, compressibility, elastic constants, and fundamental properties of atomic structure, particularly as applied to geophysical problems -Electron microscopy in support of physical and chemical studies -Computational methods in the study of the structure and properties of minerals -Mineral surfaces (experimental methods, structure and properties)
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信