Porous Organic Cage-Based Quasi-Solid-State Electrolyte with Cavity-Induced Anion-Trapping Effect for Long-Life Lithium Metal Batteries

IF 26.6 1区 材料科学 Q1 Engineering
Wei-Min Qin, Zhongliang Li, Wen-Xia Su, Jia-Min Hu, Hanqin Zou, Zhixuan Wu, Zhiqin Ruan, Yue-Peng Cai, Kang Li, Qifeng Zheng
{"title":"Porous Organic Cage-Based Quasi-Solid-State Electrolyte with Cavity-Induced Anion-Trapping Effect for Long-Life Lithium Metal Batteries","authors":"Wei-Min Qin,&nbsp;Zhongliang Li,&nbsp;Wen-Xia Su,&nbsp;Jia-Min Hu,&nbsp;Hanqin Zou,&nbsp;Zhixuan Wu,&nbsp;Zhiqin Ruan,&nbsp;Yue-Peng Cai,&nbsp;Kang Li,&nbsp;Qifeng Zheng","doi":"10.1007/s40820-024-01499-x","DOIUrl":null,"url":null,"abstract":"<div><p>Porous organic cages (POCs) with permanent porosity and excellent host–guest property hold great potentials in regulating ion transport behavior, yet their feasibility as solid-state electrolytes has never been testified in a practical battery. Herein, we design and fabricate a quasi-solid-state electrolyte (QSSE) based on a POC to enable the stable operation of Li-metal batteries (LMBs). Benefiting from the ordered channels and cavity-induced anion-trapping effect of POC, the resulting POC-based QSSE exhibits a high Li<sup>+</sup> transference number of 0.67 and a high ionic conductivity of 1.25 × 10<sup>−4</sup> S cm<sup>−1</sup> with a low activation energy of 0.17 eV. These allow for homogeneous Li deposition and highly reversible Li plating/stripping for over 2000 h. As a proof of concept, the LMB assembled with POC-based QSSE demonstrates extremely stable cycling performance with 85% capacity retention after 1000 cycles. Therefore, our work demonstrates the practical applicability of POC as SSEs for LMBs and could be extended to other energy-storage systems, such as Na and K batteries.</p><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":714,"journal":{"name":"Nano-Micro Letters","volume":"17 1","pages":""},"PeriodicalIF":26.6000,"publicationDate":"2024-10-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s40820-024-01499-x.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nano-Micro Letters","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s40820-024-01499-x","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 0

Abstract

Porous organic cages (POCs) with permanent porosity and excellent host–guest property hold great potentials in regulating ion transport behavior, yet their feasibility as solid-state electrolytes has never been testified in a practical battery. Herein, we design and fabricate a quasi-solid-state electrolyte (QSSE) based on a POC to enable the stable operation of Li-metal batteries (LMBs). Benefiting from the ordered channels and cavity-induced anion-trapping effect of POC, the resulting POC-based QSSE exhibits a high Li+ transference number of 0.67 and a high ionic conductivity of 1.25 × 10−4 S cm−1 with a low activation energy of 0.17 eV. These allow for homogeneous Li deposition and highly reversible Li plating/stripping for over 2000 h. As a proof of concept, the LMB assembled with POC-based QSSE demonstrates extremely stable cycling performance with 85% capacity retention after 1000 cycles. Therefore, our work demonstrates the practical applicability of POC as SSEs for LMBs and could be extended to other energy-storage systems, such as Na and K batteries.

Abstract Image

具有空穴诱导阴离子捕获效应的多孔有机笼型准固态电解质用于长寿命锂金属电池
多孔有机笼(POC)具有永久多孔性和优异的主客体特性,在调节离子传输行为方面具有巨大潜力,但其作为固态电解质的可行性尚未在实际电池中得到验证。在此,我们设计并制造了一种基于 POC 的准固态电解质(QSSE),以实现锂金属电池(LMB)的稳定运行。得益于 POC 的有序通道和空穴诱导的阴离子捕获效应,所制备的基于 POC 的 QSSE 具有 0.67 的高锂离子转移数和 1.25 × 10-4 S cm-1 的高离子电导率,且活化能低至 0.17 eV。作为概念验证,使用基于 POC 的 QSSE 组装的 LMB 表现出极其稳定的循环性能,1000 次循环后容量保持率达 85%。因此,我们的工作证明了 POC 作为 LMB 的 SSE 的实际适用性,并可扩展到其他储能系统,如 Na 和 K 电池。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Nano-Micro Letters
Nano-Micro Letters NANOSCIENCE & NANOTECHNOLOGY-MATERIALS SCIENCE, MULTIDISCIPLINARY
CiteScore
32.60
自引率
4.90%
发文量
981
审稿时长
1.1 months
期刊介绍: Nano-Micro Letters is a peer-reviewed, international, interdisciplinary, and open-access journal published under the SpringerOpen brand. Nano-Micro Letters focuses on the science, experiments, engineering, technologies, and applications of nano- or microscale structures and systems in various fields such as physics, chemistry, biology, material science, and pharmacy.It also explores the expanding interfaces between these fields. Nano-Micro Letters particularly emphasizes the bottom-up approach in the length scale from nano to micro. This approach is crucial for achieving industrial applications in nanotechnology, as it involves the assembly, modification, and control of nanostructures on a microscale.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信