{"title":"Influence of soil property variability on the lateral displacement of liquefiable ground reinforced by granular columns","authors":"Tengfei Mo, Qiang Wu, Dian-Qing Li, Wenqi Du","doi":"10.1007/s11440-024-02407-8","DOIUrl":null,"url":null,"abstract":"<div><p>In this paper, three-dimensional nonlinear dynamic finite-element analyses are conducted to examine the effect of soil property variability on the lateral displacement (<i>D</i>) of liquefiable ground reinforced by granular columns. A suite of 20 ground motions is selected from the NGA-West2 database as input. A soil-granular column ground system consisting of an intermediate liquefiable layer is modeled in <i>OpenSees</i>. Both the random variable (RV) and random filed (RF) methods are adopted to model the variability of soil property parameters. Dynamic analyses are then conducted to estimate the earthquake-induced deformation of the soil-granular column system. It is found that modeling the variability of soil parameters based on the RV method generally increases the geometric mean and standard deviation (σ<sub>ln<i>D</i></sub>) of <i>D</i> for the soil-granular column system. Enlarging the spatial correlation of soil parameters in the RF model brings in a slight increase of the mean <i>D</i> and comparable σ<sub>ln<i>D</i></sub> values, respectively. Hence, incorporating the spatially correlated soil property parameters may not be necessarily increase the variation of <i>D</i> for the soil-granular column system. Specifically, the statistical distribution of <i>D</i> is more sensitive to the vertical scale of fluctuation rather than the horizontal one. The results presented could aid in addressing the variability issue for performance-based design of granular column-reinforced liquefiable ground in engineering applications.</p></div>","PeriodicalId":49308,"journal":{"name":"Acta Geotechnica","volume":null,"pages":null},"PeriodicalIF":5.6000,"publicationDate":"2024-09-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Geotechnica","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s11440-024-02407-8","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, GEOLOGICAL","Score":null,"Total":0}
引用次数: 0
Abstract
In this paper, three-dimensional nonlinear dynamic finite-element analyses are conducted to examine the effect of soil property variability on the lateral displacement (D) of liquefiable ground reinforced by granular columns. A suite of 20 ground motions is selected from the NGA-West2 database as input. A soil-granular column ground system consisting of an intermediate liquefiable layer is modeled in OpenSees. Both the random variable (RV) and random filed (RF) methods are adopted to model the variability of soil property parameters. Dynamic analyses are then conducted to estimate the earthquake-induced deformation of the soil-granular column system. It is found that modeling the variability of soil parameters based on the RV method generally increases the geometric mean and standard deviation (σlnD) of D for the soil-granular column system. Enlarging the spatial correlation of soil parameters in the RF model brings in a slight increase of the mean D and comparable σlnD values, respectively. Hence, incorporating the spatially correlated soil property parameters may not be necessarily increase the variation of D for the soil-granular column system. Specifically, the statistical distribution of D is more sensitive to the vertical scale of fluctuation rather than the horizontal one. The results presented could aid in addressing the variability issue for performance-based design of granular column-reinforced liquefiable ground in engineering applications.
期刊介绍:
Acta Geotechnica is an international journal devoted to the publication and dissemination of basic and applied research in geoengineering – an interdisciplinary field dealing with geomaterials such as soils and rocks. Coverage emphasizes the interplay between geomechanical models and their engineering applications. The journal presents original research papers on fundamental concepts in geomechanics and their novel applications in geoengineering based on experimental, analytical and/or numerical approaches. The main purpose of the journal is to foster understanding of the fundamental mechanisms behind the phenomena and processes in geomaterials, from kilometer-scale problems as they occur in geoscience, and down to the nano-scale, with their potential impact on geoengineering. The journal strives to report and archive progress in the field in a timely manner, presenting research papers, review articles, short notes and letters to the editors.