Highly sensitive time-resolved fluorescent microspheres lateral flow immunoassay for the quantitative detection of triadimefon and its metabolite residues in fruits and vegetables
{"title":"Highly sensitive time-resolved fluorescent microspheres lateral flow immunoassay for the quantitative detection of triadimefon and its metabolite residues in fruits and vegetables","authors":"San-Jun Shi, Mei-Qi Ji, Rong-Fu Huang, Zi-Yan Fan","doi":"10.1007/s00604-024-06755-w","DOIUrl":null,"url":null,"abstract":"<div><p> A general one-step lateral flow immunochromatographic assay (LFIA) for the quantitative detection of triadimefon (TDF) and triadimenol (TDN) in fruit and vegetable samples was developed using time-resolved fluorescence microspheres (TRFM) as labels. A specific anti-triadimefon monoclonal antibody (mAb) was conjugated with TRFM to fabricate LFIA test strips. A time-resolved fluorometer as an LFIA reader was applied to obtain quantitative results and assess risk ranges for the LFIA test strips. Under the optimized experimental conditions, the limits of detection (LODs) in buffer/cucumbers/tomatoes/oranges were 0.046 ng/mL, 0.135 µg/kg, 1.047 µg/kg, and 5.811 µg/kg, respectively, which are <i>ca</i>. 1000 times lower than that of colloidal gold-labeled strips. The recovery in cucumber/tomato/orange samples was 109.4–116.7%, 87.7–110.9%, and 88.0–111.9%, respectively, indicating that the test strips had good reliability. Coupled with the easily customizable pretreatment procedures for various samples, the LFIA results were obtained within 18 min without the need for professional personnel or complicated equipment. TRFM-LFIA for TDF and TDN also shows remarkable specificity and precision. The test strips were also low-cost, portable, and convenient to use. These results indicate the test strips could be utilized as a novel strategy for on-site detection of TDF and TDN, which has the potential to expand and detect other pesticide or insecticide residues in food.</p><h3>Graphical abstract</h3>\n<div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":705,"journal":{"name":"Microchimica Acta","volume":"191 11","pages":""},"PeriodicalIF":5.3000,"publicationDate":"2024-10-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Microchimica Acta","FirstCategoryId":"92","ListUrlMain":"https://link.springer.com/article/10.1007/s00604-024-06755-w","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0
Abstract
A general one-step lateral flow immunochromatographic assay (LFIA) for the quantitative detection of triadimefon (TDF) and triadimenol (TDN) in fruit and vegetable samples was developed using time-resolved fluorescence microspheres (TRFM) as labels. A specific anti-triadimefon monoclonal antibody (mAb) was conjugated with TRFM to fabricate LFIA test strips. A time-resolved fluorometer as an LFIA reader was applied to obtain quantitative results and assess risk ranges for the LFIA test strips. Under the optimized experimental conditions, the limits of detection (LODs) in buffer/cucumbers/tomatoes/oranges were 0.046 ng/mL, 0.135 µg/kg, 1.047 µg/kg, and 5.811 µg/kg, respectively, which are ca. 1000 times lower than that of colloidal gold-labeled strips. The recovery in cucumber/tomato/orange samples was 109.4–116.7%, 87.7–110.9%, and 88.0–111.9%, respectively, indicating that the test strips had good reliability. Coupled with the easily customizable pretreatment procedures for various samples, the LFIA results were obtained within 18 min without the need for professional personnel or complicated equipment. TRFM-LFIA for TDF and TDN also shows remarkable specificity and precision. The test strips were also low-cost, portable, and convenient to use. These results indicate the test strips could be utilized as a novel strategy for on-site detection of TDF and TDN, which has the potential to expand and detect other pesticide or insecticide residues in food.
期刊介绍:
As a peer-reviewed journal for analytical sciences and technologies on the micro- and nanoscale, Microchimica Acta has established itself as a premier forum for truly novel approaches in chemical and biochemical analysis. Coverage includes methods and devices that provide expedient solutions to the most contemporary demands in this area. Examples are point-of-care technologies, wearable (bio)sensors, in-vivo-monitoring, micro/nanomotors and materials based on synthetic biology as well as biomedical imaging and targeting.