The role of microwave radiation in extractive desulfurization of real diesel fuel for green environment: an experimental and computational investigation
Hamida Y. Mostafa, Ghada E. Khedr, Ard Elshifa M. E. Mohamed, Dina M. Abd El-Aty
{"title":"The role of microwave radiation in extractive desulfurization of real diesel fuel for green environment: an experimental and computational investigation","authors":"Hamida Y. Mostafa, Ghada E. Khedr, Ard Elshifa M. E. Mohamed, Dina M. Abd El-Aty","doi":"10.1186/s13065-024-01292-2","DOIUrl":null,"url":null,"abstract":"<div><p>The process of removing sulfur compounds and aromatic compounds to produce clean fuel is an important and effective contribution to the processes of mitigating and adapting to climate change. In contrast, it is necessary to find an innovative way to remove sulfur and carcinogenic aromatic compounds because clean, low-sulfur diesel is commonly used in all countries of the world at the present time. Therefore, in this work, we have studied the effect of the microwave radiation power and the irradiation time with the use of more than one type of organic solvent; methanol, acetonitrile and ethyl acetoacetate; as an extractant and solvent to feed ratio impact on the removal of sulfur and aromatic compounds of a real diesel fuel feed which has 450 ppm sulfur content and 16 wt% aromatic Content. The results showed that the best solvent used during this work was ethyl acetoacetate. According to the results, high sulfur removal (≈ 92%) was accomplished with microwave-assisted extractive desulfurization technique under the following ideal conditions: the irradiation time is 7 min, the solvent feed ratio is 3:1 and the microwave intensity is 180 W. To reveal the mechanism of microwave-assisted extractive desulfurization via different organic solvents, a theoretical study including structural examination and interaction energy analysis on the interaction between dibenzothiophene (DBT) or dimethyl dibenzothiophene (DMDBT) and the different organic solvents was also conducted.</p></div>","PeriodicalId":496,"journal":{"name":"BMC Chemistry","volume":null,"pages":null},"PeriodicalIF":4.3000,"publicationDate":"2024-10-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://bmcchem.biomedcentral.com/counter/pdf/10.1186/s13065-024-01292-2","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"BMC Chemistry","FirstCategoryId":"92","ListUrlMain":"https://link.springer.com/article/10.1186/s13065-024-01292-2","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
The process of removing sulfur compounds and aromatic compounds to produce clean fuel is an important and effective contribution to the processes of mitigating and adapting to climate change. In contrast, it is necessary to find an innovative way to remove sulfur and carcinogenic aromatic compounds because clean, low-sulfur diesel is commonly used in all countries of the world at the present time. Therefore, in this work, we have studied the effect of the microwave radiation power and the irradiation time with the use of more than one type of organic solvent; methanol, acetonitrile and ethyl acetoacetate; as an extractant and solvent to feed ratio impact on the removal of sulfur and aromatic compounds of a real diesel fuel feed which has 450 ppm sulfur content and 16 wt% aromatic Content. The results showed that the best solvent used during this work was ethyl acetoacetate. According to the results, high sulfur removal (≈ 92%) was accomplished with microwave-assisted extractive desulfurization technique under the following ideal conditions: the irradiation time is 7 min, the solvent feed ratio is 3:1 and the microwave intensity is 180 W. To reveal the mechanism of microwave-assisted extractive desulfurization via different organic solvents, a theoretical study including structural examination and interaction energy analysis on the interaction between dibenzothiophene (DBT) or dimethyl dibenzothiophene (DMDBT) and the different organic solvents was also conducted.
期刊介绍:
BMC Chemistry, formerly known as Chemistry Central Journal, is now part of the BMC series journals family.
Chemistry Central Journal has served the chemistry community as a trusted open access resource for more than 10 years – and we are delighted to announce the next step on its journey. In January 2019 the journal has been renamed BMC Chemistry and now strengthens the BMC series footprint in the physical sciences by publishing quality articles and by pushing the boundaries of open chemistry.