Acid- and base-resistant antimicrobial hydrogels based on polyoxometalates and chitosan†

Callum McWilliams, Isabel Franco-Castillo, Andrés Seral Ascaso, Sonia García-Embid, Mariella Malefioudaki, Johann G. Meier, Rafael Martín-Rapún and Scott G. Mitchell
{"title":"Acid- and base-resistant antimicrobial hydrogels based on polyoxometalates and chitosan†","authors":"Callum McWilliams, Isabel Franco-Castillo, Andrés Seral Ascaso, Sonia García-Embid, Mariella Malefioudaki, Johann G. Meier, Rafael Martín-Rapún and Scott G. Mitchell","doi":"10.1039/D4PM00062E","DOIUrl":null,"url":null,"abstract":"<p >Invasive fungal infections kill more than 1.7 million and affect over a billion people each year; however, their devastating impact on human health is not widely appreciated and frequently neglected by public health authorities. In 2022, the WHO highlighted the urgent need for efficient diagnostic tests as well as safe and effective new compounds, drugs, and vaccines. Our hypothesis was that the naturally occurring polymer chitosan (CS) could be combined with molecular polyoxometalates (POMs) to produce POM@CS hybrid materials to promote broad-spectrum activity and habilitate synergic effects, which will ultimately help to prevent the appearance of resistances. Here we report the synthesis, characterisation, and antimicrobial activity of POM@CS hydrogels. Spectroscopic (FT-IR &amp; EDS) and electron microscopy (SEM &amp; TEM) techniques revealed the structural composition and morphology of the hybrid materials, whilst dynamic mechanical analysis demonstrated that the mechanical properties of the hydrogels were stable between pH 2 and 10 and were highly resistant to acidic conditions. The POM@CS hydrogels were active against Gram-positive <em>Bacillus subtilis</em> and Gram-negative <em>Escherichia coli</em> bacteria, and proved to completely reduce fungal growth of <em>Aspergillus niger</em> and <em>Cladosporium cladosporioides</em>. Furthermore, the antimicrobial activity of the hydrogels could be enhanced through the inclusion of naturally occurring antimicrobial agents such as eugenol and cinnamaldehyde. Altogether, the development of such surface-active antimicrobial hydrogels pave the way to functional materials that can prevent biofilm formation in health and environmental applications and contribute to reducing the spread of antimicrobial resistance.</p>","PeriodicalId":101141,"journal":{"name":"RSC Pharmaceutics","volume":" 4","pages":" 755-764"},"PeriodicalIF":0.0000,"publicationDate":"2024-05-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2024/pm/d4pm00062e?page=search","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"RSC Pharmaceutics","FirstCategoryId":"1085","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2024/pm/d4pm00062e","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Invasive fungal infections kill more than 1.7 million and affect over a billion people each year; however, their devastating impact on human health is not widely appreciated and frequently neglected by public health authorities. In 2022, the WHO highlighted the urgent need for efficient diagnostic tests as well as safe and effective new compounds, drugs, and vaccines. Our hypothesis was that the naturally occurring polymer chitosan (CS) could be combined with molecular polyoxometalates (POMs) to produce POM@CS hybrid materials to promote broad-spectrum activity and habilitate synergic effects, which will ultimately help to prevent the appearance of resistances. Here we report the synthesis, characterisation, and antimicrobial activity of POM@CS hydrogels. Spectroscopic (FT-IR & EDS) and electron microscopy (SEM & TEM) techniques revealed the structural composition and morphology of the hybrid materials, whilst dynamic mechanical analysis demonstrated that the mechanical properties of the hydrogels were stable between pH 2 and 10 and were highly resistant to acidic conditions. The POM@CS hydrogels were active against Gram-positive Bacillus subtilis and Gram-negative Escherichia coli bacteria, and proved to completely reduce fungal growth of Aspergillus niger and Cladosporium cladosporioides. Furthermore, the antimicrobial activity of the hydrogels could be enhanced through the inclusion of naturally occurring antimicrobial agents such as eugenol and cinnamaldehyde. Altogether, the development of such surface-active antimicrobial hydrogels pave the way to functional materials that can prevent biofilm formation in health and environmental applications and contribute to reducing the spread of antimicrobial resistance.

Abstract Image

基于聚氧金属酸盐和壳聚糖的耐酸碱抗菌水凝胶
侵袭性真菌感染每年导致 170 多万人死亡,影响 10 多亿人;然而,它们对人类健康的破坏性影响并未得到广泛重视,而且经常被公共卫生部门忽视。2022 年,世界卫生组织强调迫切需要高效的诊断测试以及安全有效的新化合物、药物和疫苗。我们的假设是,可将天然聚合物壳聚糖(CS)与分子聚氧金属盐(POMs)结合,生产出 POM@CS 混合材料,以促进广谱活性和协同效应,最终有助于防止抗药性的出现。在此,我们报告了 POM@CS 水凝胶的合成、表征和抗菌活性。光谱(FT-IR & EDS)和电子显微镜(SEM & TEM)技术揭示了混合材料的结构组成和形态,而动态机械分析表明,水凝胶的机械性能在 pH 值为 2 到 10 之间保持稳定,并具有很强的耐酸性。POM@CS 水凝胶对革兰氏阳性枯草杆菌和革兰氏阴性大肠杆菌具有活性,并能完全抑制黑曲霉和克拉多孢子菌等真菌的生长。此外,通过加入丁香酚和肉桂醛等天然抗菌剂,还能增强水凝胶的抗菌活性。总之,这种表面活性抗菌水凝胶的开发为功能材料的开发铺平了道路,这些功能材料可在健康和环境应用中防止生物膜的形成,并有助于减少抗菌药耐药性的传播。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信