Experimental validation of the amplitude ratio as a metric for milling stability identification

IF 1.9 Q3 ENGINEERING, MANUFACTURING
Mark A. Rubeo
{"title":"Experimental validation of the amplitude ratio as a metric for milling stability identification","authors":"Mark A. Rubeo","doi":"10.1016/j.mfglet.2024.09.078","DOIUrl":null,"url":null,"abstract":"<div><div>This paper presents the experimental validation of the amplitude ratio, a metric for milling stability identification. The amplitude ratio quantifies the severity of chatter by comparing the amplitude of the expected frequency content of a milling signal (i.e., tooth passing frequency, runout frequency, and harmonics) to the amplitude of the chatter frequency, if present. Through multiple iterations of a milling time domain simulation, the amplitude ratio diagram, which characterizes stable and unstable milling behavior over a range of spindle speeds and axial depths of cut, may be generated. In this paper, a comparison of the simulated and measured amplitude ratios for a series of milling test cuts is presented. It is shown that the amplitude ratio is suitable for identifying milling stability in both simulations and experiments. Additionally, it is shown that through judicious selection of low-cost sensors, implementation of the amplitude ratio is cost efficient. Direct comparison of the simulated and measured amplitude ratios demonstrates the effectiveness of the approach.</div></div>","PeriodicalId":38186,"journal":{"name":"Manufacturing Letters","volume":"41 ","pages":"Pages 610-618"},"PeriodicalIF":1.9000,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Manufacturing Letters","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S221384632400141X","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, MANUFACTURING","Score":null,"Total":0}
引用次数: 0

Abstract

This paper presents the experimental validation of the amplitude ratio, a metric for milling stability identification. The amplitude ratio quantifies the severity of chatter by comparing the amplitude of the expected frequency content of a milling signal (i.e., tooth passing frequency, runout frequency, and harmonics) to the amplitude of the chatter frequency, if present. Through multiple iterations of a milling time domain simulation, the amplitude ratio diagram, which characterizes stable and unstable milling behavior over a range of spindle speeds and axial depths of cut, may be generated. In this paper, a comparison of the simulated and measured amplitude ratios for a series of milling test cuts is presented. It is shown that the amplitude ratio is suitable for identifying milling stability in both simulations and experiments. Additionally, it is shown that through judicious selection of low-cost sensors, implementation of the amplitude ratio is cost efficient. Direct comparison of the simulated and measured amplitude ratios demonstrates the effectiveness of the approach.
将振幅比作为铣削稳定性识别指标的实验验证
本文介绍了振幅比的实验验证,这是一种用于铣削稳定性识别的指标。振幅比通过比较铣削信号的预期频率内容(即齿过频率、跳动频率和谐波)的振幅与颤振频率(如果存在)的振幅来量化颤振的严重程度。通过多次迭代铣削时域仿真,可以生成幅值比图,该图描述了在一定主轴转速和轴向切削深度范围内稳定和不稳定的铣削行为。本文对一系列铣削测试切削的模拟振幅比和测量振幅比进行了比较。结果表明,在模拟和实验中,振幅比都适用于识别铣削稳定性。此外,研究还表明,通过明智地选择低成本传感器,振幅比的实施具有成本效益。对模拟和测量的振幅比进行直接比较,证明了该方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Manufacturing Letters
Manufacturing Letters Engineering-Industrial and Manufacturing Engineering
CiteScore
4.20
自引率
5.10%
发文量
192
审稿时长
60 days
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信