{"title":"Construction of 2D/2D heterostructure with porous few layer g-C3N4 and NiCo2O4 nanosheets towards electromagnetic wave absorption","authors":"Nuohua Xie , Wenzi Chen , Ya Ning, Xiaojun Zeng","doi":"10.1016/j.mtnano.2024.100529","DOIUrl":null,"url":null,"abstract":"<div><div>Developing high-performance materials with ultra-high reflection loss (<em>R</em><sub>L</sub> ≤ −65 dB) for electromagnetic wave (EMW) absorption is pivotal to address electromagnetic pollution, but it is still challenging. Herein, a two-dimensional (2D)/2D PFL g-C<sub>3</sub>N<sub>4</sub>/NiCo<sub>2</sub>O<sub>4</sub> heterostructure with porous few-layer g-C<sub>3</sub>N<sub>4</sub> (PFL g-C<sub>3</sub>N<sub>4</sub>) and ultrathin NiCo<sub>2</sub>O<sub>4</sub> nanosheets has been prepared by self-assembly, hydrothermal reaction, and calcination strategies. The 2D/2D heterostructure exhibits extraordinary EMW absorption property, achieving a reflection loss (<em>R</em><sub>L</sub>) value of −68.59 dB and an effective absorption bandwidth (EAB) of 1.92 GHz at a matching thickness of 2.5 mm. As expected, the porous few layer g-C<sub>3</sub>N<sub>4</sub> nanosheets provide rich interface which increases multiple reflection paths and enhances the conduction loss. The cooperative effects of magnetic loss, dielectric loss, and impedance matching contribute to the exceptional EMW absorption property of PFL g-C<sub>3</sub>N<sub>4</sub>/NiCo<sub>2</sub>O<sub>4</sub> (2D/2D) heterostructure. The potential of PFL g-C<sub>3</sub>N<sub>4</sub>/NiCo<sub>2</sub>O<sub>4</sub> in actual radar stealth is verified through radar scattering cross-section (RCS) simulation. This work paves the way for utilizing 2D/2D heterostructure as an ultra-efficient EMW absorbers.</div></div>","PeriodicalId":48517,"journal":{"name":"Materials Today Nano","volume":"28 ","pages":"Article 100529"},"PeriodicalIF":8.2000,"publicationDate":"2024-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Today Nano","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2588842024000798","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Developing high-performance materials with ultra-high reflection loss (RL ≤ −65 dB) for electromagnetic wave (EMW) absorption is pivotal to address electromagnetic pollution, but it is still challenging. Herein, a two-dimensional (2D)/2D PFL g-C3N4/NiCo2O4 heterostructure with porous few-layer g-C3N4 (PFL g-C3N4) and ultrathin NiCo2O4 nanosheets has been prepared by self-assembly, hydrothermal reaction, and calcination strategies. The 2D/2D heterostructure exhibits extraordinary EMW absorption property, achieving a reflection loss (RL) value of −68.59 dB and an effective absorption bandwidth (EAB) of 1.92 GHz at a matching thickness of 2.5 mm. As expected, the porous few layer g-C3N4 nanosheets provide rich interface which increases multiple reflection paths and enhances the conduction loss. The cooperative effects of magnetic loss, dielectric loss, and impedance matching contribute to the exceptional EMW absorption property of PFL g-C3N4/NiCo2O4 (2D/2D) heterostructure. The potential of PFL g-C3N4/NiCo2O4 in actual radar stealth is verified through radar scattering cross-section (RCS) simulation. This work paves the way for utilizing 2D/2D heterostructure as an ultra-efficient EMW absorbers.
期刊介绍:
Materials Today Nano is a multidisciplinary journal dedicated to nanoscience and nanotechnology. The journal aims to showcase the latest advances in nanoscience and provide a platform for discussing new concepts and applications. With rigorous peer review, rapid decisions, and high visibility, Materials Today Nano offers authors the opportunity to publish comprehensive articles, short communications, and reviews on a wide range of topics in nanoscience. The editors welcome comprehensive articles, short communications and reviews on topics including but not limited to:
Nanoscale synthesis and assembly
Nanoscale characterization
Nanoscale fabrication
Nanoelectronics and molecular electronics
Nanomedicine
Nanomechanics
Nanosensors
Nanophotonics
Nanocomposites